Hydrogen Bonds under Extreme Conditions: Nuclear Quantum Effects and Hydrogen Bond Symmetrisation Probed with 1H-NMR in Diamond Anvil Cells

极端条件下的氢键:在金刚石砧池中用 1H-NMR 探测核量子效应和氢键对称性

基本信息

项目摘要

Hydrogen bonds are ubiquitous in nature and often influence structural and electronic properties of hydrogen bonded materials to a degree which is still not fully understood. This class of materials include numerous minerals and materials within the Earth and planetary bodies; thus, investigations of pressure effects on H-bonds are not only important for basic physics and chemistry, but also matter greatly for geo-and planetary sciences on a macroscopic "global scale". Therewith, in this proposal, rarely observedpressure induced nuclear quantum effects occurring even at ambient temperatures will be investigated on the example of high pressure ices and hydrous minerals, by means of a newly developed high pressure NMR technique in diamond anvil cells (DACs). These methods provide a singular vantage point of these exotic quantum phenomena, which cannot be detected with comparable spectroscopic methods used within the high pressure research community. To this extent, the elusive transition from high pressure ice VII to X will be investigated, which has been reported to occur between 70 and 150 GPa. Within this pressure range, the symmetric double-well potential of the hydrogen bond allows for proton tunneling across the energy barrier. Elucidation of these combined effects might answer some of the most controversial questions in modern high pressure sciences, such as the hydrogen transport into regions of Earth's interior.Hydrogen bond symmetrisation is expected to be a general feature in high-pressure behaviour of different compounds (particularly delta-AlOOH, MgSi2O6H2, FeOOH), and by studying them at megabar pressures by means of NMR (and complimentary techniques like single-crystal X-ray diffraction and vibrational spectroscopies), we expect to reveal regularities in pressure induced proton nuclear quantum effects in H-bonds.
氢键在自然界中普遍存在,并经常对氢键材料的结构和电子性质产生一定程度的影响,这一点尚不完全清楚。这类材料包括地球和行星体内的大量矿物和材料;因此,研究氢键的压力效应不仅对基础物理和化学具有重要意义,而且对地球和行星科学在宏观的“全球尺度”上具有重要意义。因此,在这个提议中,我们将以高压冰和含水矿物为例,利用新发展的金刚石顶压室(DAC)中的高压核磁共振技术,研究即使在常温下也很少观察到的压力引起的核量子效应。这些方法为这些奇异的量子现象提供了一个独特的有利位置,这是高压研究界使用的类似光谱方法无法检测到的。在这方面,将调查从高压冰VII到X的难以捉摸的过渡,据报道,这种过渡发生在70至150 Gpa之间。在这个压力范围内,氢键的对称双势能允许质子穿透能垒。阐明这些综合效应可能会回答现代高压科学中一些最具争议性的问题,如氢向地球内部的运输。氢键对称性有望成为不同化合物(特别是Delta-AlOOH,MgSi2O6H2,FeOOH)高压行为的一般特征,通过核磁共振(以及辅助技术,如单晶X射线衍射和振动光谱)在兆巴压力下对它们进行研究,我们有望揭示压力诱导氢键中质子核量子效应的规律。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Leonid Dubrovinsky, since 7/2021其他文献

Professor Dr. Leonid Dubrovinsky, since 7/2021的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Probing and Designing Cascade Reactivity in Consecutive Mechanoactivation of Covalent Bonds
共价键连续机械活化中的级联反应性的探索和设计
  • 批准号:
    2350170
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
  • 批准号:
    24K17694
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Understanding and Directing Selectivity in Functionalizations of Strong Covalent Bonds Utilizing Coordination-Sphere Effects
职业:利用配位球效应理解和指导强共价键官能化的选择性
  • 批准号:
    2338438
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NIA - Carbon Dioxide Activation and Valorisation at Copper-Phosphorus Bonds
NIA - 铜磷键的二氧化碳活化和增值
  • 批准号:
    EP/X040453/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Novel Strategies for the Assembly of Carbon-Boron Bonds via the Photoinduced Generation of Boryl-Radicals
通过光诱导产生硼基自由基组装碳硼键的新策略
  • 批准号:
    EP/V015982/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Thermochemistry of Metal-Ligand Bonds and Protonated Peptides
金属-配体键和质子化肽的热化学
  • 批准号:
    2313553
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Photoactivation of Stable Bonds for Chemical Conversions
用于化学转化的稳定键的光活化
  • 批准号:
    2243724
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Formation of intralattice anion-anion bonds of light elements using electrochemical reactions in high-pressure environments
在高压环境下利用电化学反应形成轻元素的晶格内阴离子-阴离子键
  • 批准号:
    23KJ1151
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Influence of Double Network, Internetwork Connectivity and Sacrificial Bonds on the Frictional Characteristics of Double Network Hydrogels: Experiments and Modeling
双网络、网络连通性和牺牲键对双网络水凝胶摩擦特性的影响:实验和建模
  • 批准号:
    2154530
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Activation of metal-metal bonds in stable metal cluster compounds with closed-shell configuration.
具有闭壳结构的稳定金属簇化合物中金属-金属键的活化。
  • 批准号:
    22KJ2607
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了