Fate restriction of multipotent cardiovascular progenitor populations

多能心血管祖细胞群的命运限制

基本信息

项目摘要

Heart failure is one of the leading causes for mortality in the western world. Partially, this can be attributed to the limited regenerative potential of the human heart after injury. In contrast to other species, like the zebrafish or salamanders, dead cardiomyocytes in the human heart cannot be replaced by new cells. Instead, scarring occurs limiting cardiac function. Human cardiovascular progenitor cells, which occur during embryogenesis and can be differentiated in vitro from human embryonic stem cells, harbor great potential as a therapeutic cell source for regenerative medicine. They can differentiate into cells of all cardiac lineages and are known drivers for cardiac regeneration in other species. However, the cellular mechanisms governing fundamental processes like self-renewal and fate-decision of these cells are still largely elusive hampering successful clinical translation of this promising approach. The hypothesis of this proposal is that the multipotent cardiovascular progenitor populations which arise during in vitro differentiation of human embryonic stem cells are not homogeneous populations but consist of multiple subpopulations. These subpopulations differ in their differentiation capacities, are governed by distinct transcriptional networks and respond differently to exogenous signaling cues. The main objective of the project is to develop strategies for identifying, isolating and amplifying the different cardiovascular progenitor subpopulations. To achieve this, advanced single cell technologies (transcriptomics and epigenomics) will be combined with virus-based lineage tracing. The knowledge generated will be further exploited to establish new tools to temporally and spatially control amplification and differentiation of these cells in a novel 3D cell-culture system mimicking the in vivo situation. This targeted approach will provide first results on the therapeutic potential of cardiovascular progenitor subpopulations as a novel cell source for regenerative therapies.
心力衰竭是西方世界死亡的主要原因之一。部分原因是人类心脏在受伤后再生潜力有限。与其他物种不同,如斑马鱼或蝾螈,人类心脏中死亡的心肌细胞不能被新细胞取代。相反,疤痕的发生限制了心脏功能。人心血管祖细胞是在胚胎发生过程中产生的,可以在体外从人胚胎干细胞分化而来,具有作为再生医学治疗细胞来源的巨大潜力。它们可以分化成所有心脏谱系的细胞,并且是其他物种中心脏再生的已知驱动因素。然而,控制这些细胞的自我更新和命运决定等基本过程的细胞机制仍然在很大程度上难以实现,阻碍了这种有前途的方法的成功临床转化。该建议的假设是,在人胚胎干细胞的体外分化过程中产生的多能心血管祖细胞群体不是同质群体,而是由多个亚群组成。这些亚群的分化能力不同,受不同的转录网络控制,对外源信号的反应也不同。该项目的主要目标是制定识别、分离和扩增不同心血管祖细胞亚群的策略。为了实现这一目标,先进的单细胞技术(转录组学和表观基因组学)将与基于病毒的谱系追踪相结合。所产生的知识将被进一步利用,以建立新的工具,在模拟体内情况的新型3D细胞培养系统中,在时间和空间上控制这些细胞的扩增和分化。这种有针对性的方法将提供关于心血管祖细胞亚群作为再生疗法的新型细胞来源的治疗潜力的第一结果。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Alexander Goedel其他文献

Dr. Alexander Goedel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
  • 批准号:
    2349828
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Meal timing and energy restriction as regulators of central and peripheral human rhythms
进餐时间和能量限制作为中枢和外周人类节律的调节器
  • 批准号:
    BB/Y006852/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigation of compounds that mimic the effects of calorie restriction on healthy life extension and their mechanisms of action
研究模拟热量限制对延长健康寿命的影响的化合物及其作用机制
  • 批准号:
    23H03331
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Phenylalanine Restriction in BNCT to Enhance L-BPA Uptake in Tumor
BNCT 中的苯丙氨酸限制可增强肿瘤中 L-BPA 的摄取
  • 批准号:
    23K14924
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Regulation of RNA sensing and viral restriction by RNA structures
RNA 结构对 RNA 传感和病毒限制的调节
  • 批准号:
    10667802
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Time Restricted Eating to Mitigate Obesity in Veterans with Spinal Cord Injury
限制时间饮食以减轻脊髓损伤退伍军人的肥胖
  • 批准号:
    10752306
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Technology Assisted Treatment for Binge Eating Behavior
暴食行为的技术辅助治疗
  • 批准号:
    10603975
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Exploiting Metabolism to Uncloak Epstein-Barr Virus Immunogens in Latently Infected B-cells
利用代谢揭示潜伏感染 B 细胞中的 Epstein-Barr 病毒免疫原
  • 批准号:
    10889325
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Diversity Supplement to Microvascular mechanisms of growth restriction after environmental toxicant exposure (R01ES031285)
环境毒物暴露后生长受限的微血管机制的多样性补充(R01ES031285)
  • 批准号:
    10849145
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了