Development of a Lattice Boltzmann Method for the Simulation of Dynamic Crack Propagation in Brittle Materials
开发用于模拟脆性材料动态裂纹扩展的格子玻尔兹曼方法
基本信息
- 批准号:423809639
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop a numerical method for the simulation of crack propagation in brittle (i.e. linear elastic) materials, which also considers the inertia of the surrounding material. For this purpose a so-called Lattice Boltzmann Method (LBM) will be used. Typically, the LBM is used to simulate fluid flows. The idea of the LBM is to model the macroscopic behavior of a continuum by computing the evolution of distribution functions, which represent the behavior of the fluid on a microscopic level. The distribution functions are defined at discrete lattice points and are transported along a predefined spatial lattice to the neighbor lattice points in one discrete time step. In the subsequent collision step, distribution functions are recomputed in dependence of all other distribution functions at the considered lattice point, material parameters and lattice quantities.In order to simulate structural problems with the LBM, it is necessary to extend an already existing LBM for simplified deformation assumptions of a solid (i.e. antiplane shear deformation). This means that the existing method needs to be modified in order to be able to model plane strain and plane stress problems. Subsequently, stationary (i.e. non-moving) cracks will be implemented by modeling the boundary conditions at the crack correctly. This is not a trivial task since it is intended that the method sets few limitations on possible crack patterns. Eventually, crack growth based on a criterion of fracture mechanics will also be implemented in the LBM. To this end, a suited approach will be chosen from the literature and adapted to the LBM. At this point the developed LBM will be able to realistically model dynamic crack growth in brittle materials. This implies that features of dynamic fracture such as characteristic upper limits of the crack speed and dynamic crack branching can be observed in simulations.The method described above will be implemented in a software that allows the simulation of various user-defined dynamic linear elastic problems as well as problems of dynamic crack growth in linear elastic materials. The inherent explicit and parallelizable character of the LBM will be exploited in order to significantly decrease the runtime compared to other methods. Furthermore, the software will include interfaces for user-defined extensions and will provide the framework for a future extension to three-dimensions.
该项目的目标是开发一种数值方法,用于模拟脆性(即线弹性)材料中的裂纹扩展,该方法还考虑了周围材料的惯性。为此,将使用所谓的格子玻尔兹曼方法(LBM)。通常,LBM用于模拟流体流动。LBM的思想是通过计算分布函数的演化来模拟连续介质的宏观行为,分布函数在微观水平上代表流体的行为。分布函数在离散格点处定义,并且在一个离散时间步长中沿预定义的空间格点沿着传输到相邻格点。在随后的碰撞步骤中,分布函数被重新计算依赖于所有其他分布函数在所考虑的晶格点,材料参数和lattice quantities. To模拟结构问题与LBM,它是必要的扩展已经存在的LBM简化变形假设的固体(即反平面剪切变形)。这意味着现有的方法需要修改,以便能够模拟平面应变和平面应力问题。随后,将通过正确地对裂纹处的边界条件进行建模来实现静止(即,不移动)裂纹。这不是一个微不足道的任务,因为它旨在使该方法对可能的裂纹模式设置很少的限制。最后,基于断裂力学准则的裂纹扩展也将在LBM中实现。为此,将从文献中选择合适的方法并使其适应LBM。在这一点上,开发的LBM将能够逼真地模拟脆性材料中的动态裂纹扩展。这意味着,在模拟中可以观察到裂纹速度的特征上限和动态裂纹分支等动态断裂的特征。上述方法将在允许模拟各种用户定义的动态线弹性问题以及线弹性材料中的动态裂纹扩展问题的软件中实现。与其他方法相比,LBM固有的显式和可并行化特性将被利用,以显着减少运行时间。此外,该软件将包括用户自定义扩展的接口,并将为今后扩展到三维提供框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Ralf Müller其他文献
Professor Dr.-Ing. Ralf Müller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Ralf Müller', 18)}}的其他基金
Investigation of size effects in ferroic materials using phase field simulations
使用相场模拟研究铁质材料的尺寸效应
- 批准号:
201207612 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Units
Simulation of precipitate morphologies in ferroelectric materials
铁电材料中析出物形貌的模拟
- 批准号:
528293120 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Development of a viscoelastic phase field model for fracture processes with application to ice dynamics
开发适用于冰动力学的断裂过程粘弹性相场模型
- 批准号:
501994052 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Lattice结构IIR数字滤波器设计的序贯部分优化算法
- 批准号:62001261
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
皮米级发射度的衍射极限储存环lattice结构及动力学研究
- 批准号:11875259
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
基于结构化Lattice编码的CSMA(载波侦听多址接入)多包传输技术研究
- 批准号:61571373
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Lattice Boltzmann方法的相间传质过程界面对流模拟和实验研究
- 批准号:21176171
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Lattice的汉语语音主题分类方法研究
- 批准号:60702053
- 批准年份:2007
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于Lattice滤波器的故障诊断方法研究
- 批准号:69574015
- 批准年份:1995
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Turbulent noise reduction using adjoint lattice Boltzmann method
使用伴随格子玻尔兹曼方法降低湍流噪声
- 批准号:
22K03929 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiphase Multicomponent Lattice Boltzmann Method for Modelling Wetting on Liquid Infused Surfaces
用于模拟液体注入表面润湿的多相多组分格子玻尔兹曼方法
- 批准号:
EP/V034154/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Fellowship
PIV observations and the lattice Boltzmann simulations of turbulent transport in a plant canopy under stably-stratified atmospheric conditions
稳定分层大气条件下植物冠层湍流传输的 PIV 观测和晶格玻尔兹曼模拟
- 批准号:
20K04057 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Adjoint sensitivity analysis based on lattice Boltzmann method for flow-induced sound problems
基于格子玻尔兹曼法的流致声问题伴随灵敏度分析
- 批准号:
20K22397 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Multiple-Component, Thermal Lattice Boltzmann Model for the Fuel Cell
燃料电池的多组分热晶格玻尔兹曼模型
- 批准号:
20K04284 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of high-speed and high-accuracy simulation method on urban emergency air pollution process using lattice Boltzmann method
格子玻尔兹曼法高速高精度城市应急空气污染过程模拟方法开发
- 批准号:
18J13607 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Construction of lattice-Boltzmann method for direct simulation of the interaction between a gas-liquid interface and sound
直接模拟气液界面与声音相互作用的格子-玻尔兹曼方法的构建
- 批准号:
18K03930 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lattice Boltzmann Methods on Parallel Supercomputers for Computing Mass and Momentum Transport of Foams in Filling Columns
并行超级计算机上计算填充塔中泡沫质量和动量传递的格子玻尔兹曼方法
- 批准号:
408059952 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Soft, Structured Layers on the Surface of a Quartz Crystal Microbalance (QCM): A Computational Model to Predict Shifts of Frequency and Bandwidth Based on the Lattice-Boltzmann Method
石英晶体微天平 (QCM) 表面的软结构化层:基于格子-玻尔兹曼方法预测频率和带宽变化的计算模型
- 批准号:
324062370 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Wetting of Elastic Fibres: A Novel Immersed Boundary-Lattice Spring-Lattice Boltzmann Simulation Approach
弹性纤维的润湿:一种新颖的浸入式边界晶格弹簧晶格玻尔兹曼模拟方法
- 批准号:
EP/P007139/1 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




