Quality assured flow production of light UHPC bar elements using artificial neural networks

使用人工神经网络对轻型 UHPC 棒元件进行有质量保证的流程生产

基本信息

  • 批准号:
    423958617
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2019
  • 资助国家:
    德国
  • 起止时间:
    2018-12-31 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Construction is still strongly influenced by workmanship. The value of a construction project is mainly taking place at the construction. Due to external conditions such as weather, the construction process is prone to error. Furthermore, the dependence on the manual skill of construction workers leads in many cases to unsatisfactory results in terms of quality of the structures. Long construction times are yet another consequence of in-situ manufacturing. Precast concrete elements can solve a part of the production problems on site. However, similar complex production steps as with in-situ concrete construction (preparing reinforcement and formwork, stripping, cleaning formwork) lead to similar problems.A modular design should lead to faster and cheaper construction. By reducing the possible components to a catalog of elements, higher similarities can be possible, allowing an economic flow production process.Trusses with their nodes and bars should allow the erection of supporting structures with high precision in a short time. The focus of the proposed research is the production of bar elements by extrusion. Hollow cylinders made of ultra-high-strength concrete (UHPC) with carbon reinforcement, developed at the Institute for Building Materials (IfB), are extruded. This element is characterized by a particularly low weight, a high buckling stability and a ductile behavior. Extruding UHPC requires a high level of quality assurance. In the case of the proposed research project, a continuous, self-learning quality assurance in the form of an artificial neural network (ANN), which is to be developed by the Institute of Statics and Dynamics (ISD).The aim is to develop an extrusion process for UHPC that incorporates a sensor concept "from day one", i.e. from the first steps of manufacturing. The measured data is used by the ANN to monitor the production process. For this purpose, the ANN is trained by measured data obtained from “healthy” extrusion processes. Furthermore, errors are deliberately introduced in some processes to “train" the ANN to recognize such and recommend countermeasures. Finally, in a statistical analysis, the safety gain is quantified by the proposed quality assurance framework. The work program provides for the following work packages:-Development of a method of extruding UHPC-Development of a sensor concept- Experiments to UHFB extrusion- Training of the ANN- Simulation of erroneous processes.-Quantitative assessment of the safety gain
建筑业仍然受到工艺的强烈影响。建筑工程的价值主要发生在建筑工程中。由于天气等外部条件的影响,施工过程中容易出错。此外,对建筑工人手工技能的依赖在许多情况下导致结构质量方面的不令人满意的结果。建造时间长是原位制造的另一个后果。预制混凝土构件可以解决现场的部分生产问题。然而,与现场混凝土施工类似的复杂生产步骤(准备钢筋和模板、剥离、清理模板)会导致类似的问题。模块化设计应该会导致更快、更便宜的施工。通过将可能的构件减少到一个元素目录,可以实现更高的相似性,从而实现经济的流程生产过程。桁架及其节点和杆件应允许在短时间内以高精度安装支撑结构。建议研究的重点是挤压生产杆件。由建筑材料研究所(IFB)开发的由超高强混凝土(UHPC)和碳加固制成的空心圆筒被挤压。这种构件的特点是特别轻的重量、高的屈曲稳定性和延性。挤出超高性能混凝土需要高水平的质量保证。在拟议的研究项目中,将以人工神经网络(ANN)的形式提供持续的、自学习的质量保证,该网络将由静力学和动力学研究所(ISD)开发。目的是为超高性能混凝土开发一种“从第一天起”,即从制造的第一步开始,就纳入传感器概念的挤压工艺。神经网络利用测量数据对生产过程进行监控。为此,神经网络通过从“健康的”挤压过程中获得的测量数据进行训练。此外,在某些过程中故意引入错误,以便对ANN进行识别并建议对策。最后,在统计分析中,提出的质量保证框架量化了安全收益。工作计划规定了以下工作包:-开发挤出UHPC的方法-开发传感器概念-UHFB挤出的实验-ANN的培训-错误过程的模拟。-安全收益的定量评估

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Ludger Lohaus其他文献

Professor Dr.-Ing. Ludger Lohaus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Ludger Lohaus', 18)}}的其他基金

Stability of concrete subjected to vibration – Analysis of the nano- and microscopic structural build-up and structural breakdown behavior of cementitious suspensions
振动下混凝土的稳定性 â 分析水泥悬浮液的纳米和微观结构构建和结构破坏行为
  • 批准号:
    411375374
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Specimen heating as damage indicator for fatigue tests of concrete
试样加热作为混凝土疲劳试验的损伤指标
  • 批准号:
    284163400
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Wrapped Hybrid Tubes
缠绕式混合管
  • 批准号:
    257623116
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Untersuchung des Gefrierverhaltens und der Strukturänderung hochfester Zementsteine und hochfester Feinsandmörtel infolge der Temperatur- und Feuchteänderung
温度和湿度变化导致高强水泥砖和高强细砂砂浆的冻结行为和结构变化的研究
  • 批准号:
    5206890
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coordination Funds
协调基金
  • 批准号:
    353531623
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

SBIR Phase I: A Cyber Assured Space Internet Device
SBIR 第一阶段:网络安全空间互联网设备
  • 批准号:
    2327618
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Co-Designed Control and Scheduling Adaptation for Assured Cyber-Physical System Safety and Performance
协作研究:CPS:中:共同设计控制和调度适应,以确保网络物理系统的安全和性能
  • 批准号:
    2229290
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Co-Designed Control and Scheduling Adaptation for Assured Cyber-Physical System Safety and Performance
协作研究:CPS:中:共同设计控制和调度适应,以确保网络物理系统的安全和性能
  • 批准号:
    2229136
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Operator-Automation Shared Protection for Security and Safety Assured Industrial Control Systems: Learning, Detection, and Recovery Control
ERI:操作员自动化共享保护,确保工业控制系统安全:学习、检测和恢复控制
  • 批准号:
    2301543
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Travel Grant: Conference on New Frontiers in Networked Dynamical Systems: Assured Learning, Communication, and Control
差旅补助金:网络动态系统新领域会议:有保证的学习、通信和控制
  • 批准号:
    2335461
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SATURN - Satellite Assured Time service supporting UK Resilience
SATURN - 卫星保证授时服务支持英国的复原力
  • 批准号:
    10010000
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CPS: Medium: Safety Assured, Performance Driven Autonomous Vehicles
CPS:中:安全有保证、性能驱动的自动驾驶汽车
  • 批准号:
    2211599
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service (Renewal): From Cybersecurity to Assured Autonomy
Cyber​​Corps 服务奖学金(续展):从网络安全到有保障的自治
  • 批准号:
    2146254
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quality-Assured End-to-End Big Data Approximation Processing
有质量保证的端到端大数据近似处理
  • 批准号:
    22H03594
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A safety-assured architecture for AI-enabled autonomous vehicles
支持人工智能的自动驾驶汽车的安全架构
  • 批准号:
    RGPIN-2022-03944
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了