A safety-assured architecture for AI-enabled autonomous vehicles
支持人工智能的自动驾驶汽车的安全架构
基本信息
- 批准号:RGPIN-2022-03944
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) has enabled new kinds of autonomous mobile robots that are on the verge of transforming multiple sectors of society. These include autonomous vehicles (AVs), sidewalk delivery robots, autonomous agricultural machines, cleaning robots, autonomous trains, and drones. Today, many of these robots fundamentally rely on deep learning for perception tasks such as object recognition, but deep learning starts to also penetrate prediction, planning, and control tasks. These advances greatly improve the adaptability of these systems and their ability to handle complex situations and interactions. These systems are expected to interact with humans and other robots in open environments that are subject to unexpected obstacles, varying weather conditions, and evolving infrastructures. Unfortunately, systems that rely on deep learning pose a great challenge to safety assurance, which is a major obstacle to their wide deployment. Deep neural networks (DNNs) lack human interpretability and may fail in unpredictable ways on new inputs. Further, the tasks they target, such as recognizing a pedestrian, evade complete specifications. These properties make the application of traditional safety assurance methods to these systems difficult or impossible. This Discovery grant will fund a cutting-edge research program to create the next generation of system architectures for AVs that take advantage of modern AI-technologies but are inherently assurable. The expected results include (1) an architecture for perception and planning that is inspired by the dual-process theory of human cognition and integrates the high-performance decision-making of DNNs with safety-relevant reasoning in interpretable, symbolic form; and (2) the methods to assure the safety of robots using such an architecture. The program will use the UW Moose, an AV developed by the PI's team, to demonstrate and evaluate the new technology on public roads. AVs and other mobile robots will have a major impact on our society and economy over the coming decades. It is expected that AVs can reduce accident rates by as much as 80%. In Canada, this would save 1,600 lives a year and over $55 billion in healthcare costs and lost productivity. The proposed research program targets current major roadblock to a wider adoption of such systems, which is assuring their safety. The program will generate cutting-edge research results in AI and robotics, share datasets and benchmarks to stimulate scientific and technological progress, create commercializable technology, and train 24 HQP in AI and robotics over the next five years. Hands-on experience on an AV will give these HQP a significant competitive advantage on the job market. The automotive sector is the single biggest contributor to Canada's manufacturing GDP. Canadian innovation and HQP training in AV technology will contribute to maintaining Canada's role as a world leader in the automotive sector and AI.
人工智能(AI)使新型自主移动的机器人成为可能,这些机器人即将改变社会的多个部门。这些包括自动驾驶汽车(AV),人行道送货机器人,自动农业机器,清洁机器人,自动驾驶火车和无人机。今天,许多机器人基本上依赖于深度学习来完成感知任务,如物体识别,但深度学习也开始渗透到预测、规划和控制任务中。这些进步极大地提高了这些系统的适应性及其处理复杂情况和相互作用的能力。这些系统预计将在开放的环境中与人类和其他机器人进行交互,这些环境会遇到意想不到的障碍,变化的天气条件和不断发展的基础设施。不幸的是,依赖于深度学习的系统对安全保障构成了巨大挑战,这是其广泛部署的主要障碍。深度神经网络(DNN)缺乏人类可解释性,并且可能会以不可预测的方式在新输入上失败。此外,他们的目标任务,如识别行人,逃避完整的规范。这些属性使得传统的安全保证方法难以或不可能应用于这些系统。这项发现基金将资助一项尖端研究计划,为利用现代人工智能技术但本质上可保证的自动驾驶汽车创建下一代系统架构。预期结果包括:(1)感知和规划架构,其灵感来自人类认知的双过程理论,并将DNN的高性能决策与可解释的符号形式的安全相关推理相结合;以及(2)使用这种架构确保机器人安全的方法。该计划将使用PI团队开发的AV UW Moose来演示和评估公共道路上的新技术。无人驾驶汽车和其他移动的机器人将在未来几十年对我们的社会和经济产生重大影响。预计自动驾驶汽车可以将事故率降低高达80%。在加拿大,这将每年挽救1,600人的生命,节省超过550亿美元的医疗费用和生产力损失。拟议的研究计划针对目前的主要障碍,以更广泛地采用这种系统,这是确保其安全性。该计划将产生人工智能和机器人技术的前沿研究成果,共享数据集和基准,以刺激科学和技术进步,创造可商业化的技术,并在未来五年内培训24名人工智能和机器人技术的HQP。AV的实践经验将使这些HQP在就业市场上具有显著的竞争优势。汽车行业是加拿大制造业GDP的最大贡献者。加拿大在自动驾驶技术方面的创新和HQP培训将有助于保持加拿大在汽车行业和人工智能领域的世界领导者地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Czarnecki, Krzysztof其他文献
A fast time-frequency multi-window analysis using a tuning directional kernel
- DOI:
10.1016/j.sigpro.2018.01.019 - 发表时间:
2018-06-01 - 期刊:
- 影响因子:4.4
- 作者:
Czarnecki, Krzysztof;Fourer, Dominique;Rojewski, Miroslaw - 通讯作者:
Rojewski, Miroslaw
A Study of Variability Models and Languages in the Systems Software Domain
- DOI:
10.1109/tse.2013.34 - 发表时间:
2013-12-01 - 期刊:
- 影响因子:7.4
- 作者:
Berger, Thorsten;She, Steven;Czarnecki, Krzysztof - 通讯作者:
Czarnecki, Krzysztof
A three-dimensional taxonomy for bidirectional model synchronization
- DOI:
10.1016/j.jss.2015.06.003 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:3.5
- 作者:
Diskin, Zinovy;Gholizadeh, Hamid;Czarnecki, Krzysztof - 通讯作者:
Czarnecki, Krzysztof
The instantaneous frequency rate spectrogram
- DOI:
10.1016/j.ymssp.2015.06.029 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:8.4
- 作者:
Czarnecki, Krzysztof - 通讯作者:
Czarnecki, Krzysztof
A case study on consistency management of business and IT process models in banking
银行业业务与IT流程模型一致性管理案例研究
- DOI:
10.1007/s10270-013-0318-8 - 发表时间:
2014-07 - 期刊:
- 影响因子:2
- 作者:
Xiong, Yingfei;Czarnecki, Krzysztof;Kuster, Jochen;Volzer, Hagen - 通讯作者:
Volzer, Hagen
Czarnecki, Krzysztof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Czarnecki, Krzysztof', 18)}}的其他基金
Scalable and Interoperable Simulation for Testing Automated Vehicles
用于测试自动驾驶车辆的可扩展且可互操作的仿真
- 批准号:
571264-2022 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Idea to Innovation
Model-Based Synthesis and Safety Assurance of Intelligent Controllers for Autonomous Vehicles
自动驾驶汽车智能控制器的基于模型的综合和安全保证
- 批准号:
RGPIN-2017-04733 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Model-Based Synthesis and Safety Assurance of Intelligent Controllers for Autonomous Vehicles
自动驾驶汽车智能控制器的基于模型的综合和安全保证
- 批准号:
RGPIN-2017-04733 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Model-Based Synthesis and Safety Assurance of Intelligent Controllers for Autonomous Vehicles
自动驾驶汽车智能控制器的基于模型的综合和安全保证
- 批准号:
RGPIN-2017-04733 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Model-Based Synthesis and Safety Assurance of Intelligent Controllers for Autonomous Vehicles
自动驾驶汽车智能控制器的基于模型的综合和安全保证
- 批准号:
507922-2017 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Model-Based Synthesis and Safety Assurance of Intelligent Controllers for Autonomous Vehicles
自动驾驶汽车智能控制器的基于模型的综合和安全保证
- 批准号:
DGDND-2017-00077 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Model-Based Synthesis and Safety Assurance of Intelligent Controllers for Autonomous Vehicles
自动驾驶汽车智能控制器的基于模型的综合和安全保证
- 批准号:
RGPIN-2017-04733 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Model-Based Synthesis and Safety Assurance of Intelligent Controllers for Autonomous Vehicles
自动驾驶汽车智能控制器的基于模型的综合和安全保证
- 批准号:
DGDND-2017-00077 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Model-Based Synthesis and Safety Assurance of Intelligent Controllers for Autonomous Vehicles
自动驾驶汽车智能控制器的基于模型的综合和安全保证
- 批准号:
507922-2017 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
NSERC CREATE in Product-Line Engineering for Cyber-physical Systems
NSERC CREATE 网络物理系统产品线工程
- 批准号:
465463-2015 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research and Training Experience
相似海外基金
SBIR Phase I: A Cyber Assured Space Internet Device
SBIR 第一阶段:网络安全空间互联网设备
- 批准号:
2327618 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Co-Designed Control and Scheduling Adaptation for Assured Cyber-Physical System Safety and Performance
协作研究:CPS:中:共同设计控制和调度适应,以确保网络物理系统的安全和性能
- 批准号:
2229290 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Co-Designed Control and Scheduling Adaptation for Assured Cyber-Physical System Safety and Performance
协作研究:CPS:中:共同设计控制和调度适应,以确保网络物理系统的安全和性能
- 批准号:
2229136 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
ERI: Operator-Automation Shared Protection for Security and Safety Assured Industrial Control Systems: Learning, Detection, and Recovery Control
ERI:操作员自动化共享保护,确保工业控制系统安全:学习、检测和恢复控制
- 批准号:
2301543 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Travel Grant: Conference on New Frontiers in Networked Dynamical Systems: Assured Learning, Communication, and Control
差旅补助金:网络动态系统新领域会议:有保证的学习、通信和控制
- 批准号:
2335461 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
SATURN - Satellite Assured Time service supporting UK Resilience
SATURN - 卫星保证授时服务支持英国的复原力
- 批准号:
10010000 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative R&D
CPS: Medium: Safety Assured, Performance Driven Autonomous Vehicles
CPS:中:安全有保证、性能驱动的自动驾驶汽车
- 批准号:
2211599 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service (Renewal): From Cybersecurity to Assured Autonomy
CyberCorps 服务奖学金(续展):从网络安全到有保障的自治
- 批准号:
2146254 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
Quality-Assured End-to-End Big Data Approximation Processing
有质量保证的端到端大数据近似处理
- 批准号:
22H03594 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SecQual - Secure Quality Assured Logistics for Digital Food Ecosystems
SecQual - 数字食品生态系统的安全质量保证物流
- 批准号:
92016 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative R&D