Coordination Funds
协调基金
基本信息
- 批准号:424702474
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since the submission of the Meteracom phase I proposal at the end of 2018, THz communications has been experiencing a tremendous momentum in the scientific community and is today seen as one of the key enabling technologies to satisfy the exponential growth of data traffic volume, THz communications is now seen as a prime candidate for the physical layer of the sixth generation (6G) wireless systems. As data rates in wireless communications are doubling every 18 months, wireless link connections of 100 Gigabit per second, and beyond, will be critical for emerging applications and systems like wireless backhaul and fronthaul, virtual reality, kiosk down-loading, wireless close proximity links, wireless data center links or wireless chip-to-chip communication. In addition to sophisticated transmission schemes, such as spatial multiplexing, high data rates can effectively scale only in THz frequency ranges. Transmission over carrier frequencies in the THz range is, however, not without challenges, and most notably path losses, which are much more pronounced as compared to that at lower carrier frequencies. Therefore, a THz communication system cannot be designed and characterized as a scaled and incremental version of a lower frequency system. For instance, high gain antennas are indispensable to mitigate the high path loss. However, high gain comes only with high directivity. Hence, in mobile scenarios adaptive beam-forming becomes essential. Since receiver and transmitter have to discover each other under such a condition of limited viewing area, this has a critical impact on beam-tracking and acquisition, also known as device discovery. The ultra-high data rates bring new challenges and opportunities with respect to sampling and analogue-to-digital conversion. This means that channel characteristics and system design (modulation design, sampling at ultra-high data rates, symbol structure, RF design and networking aspects) become intrinsically linked and can no longer be considered separately. Circuit design with compact and integrated implementation reinforces this claim this effect especially in the absence of well-defined reference interfaces. It furthermore exemplifies the need for paradigm shifting metrological concepts to predicting the performance of THz communication systems in real-world environments. The capability to perform measurements and to develop metrological concepts to effectively evaluate these measurements are critical to the further evolution of THz communication systems. Building on phase I where we achieved significant results in all project areas, we have identified broad but strongly interlinked research areas in THz system metrology for phase II, which motivate us to apply for a joint renewal proposal.
自2018年底Meteracom第一阶段提案提交以来,THz通信在科学界一直处于巨大的发展势头,如今被视为满足数据流量指数增长的关键技术之一,THz通信现在被视为第六代(6G)无线系统物理层的主要候选者。随着无线通信中的数据速率每18个月翻一番,每秒100千兆位及以上的无线链路连接对于新兴应用和系统(如无线回程和前传、虚拟现实、信息亭下载、无线近距离链路、无线数据中心链路或无线芯片到芯片通信)至关重要。除了复杂的传输方案,如空间复用,高数据速率只能在太赫兹频率范围内有效地扩展。 然而,在THz范围内的载波频率上的传输并非没有挑战,最值得注意的是路径损耗,与较低载波频率相比,路径损耗要明显得多。因此,THz通信系统不能被设计和表征为较低频率系统的缩放和增量版本。例如,高增益天线是必不可少的,以减轻高路径损耗。然而,高增益仅伴随高方向性。因此,在移动的场景中,自适应波束形成变得至关重要。由于接收器和发射器必须在有限的观看区域的条件下发现彼此,这对波束跟踪和获取(也称为设备发现)具有关键影响。超高数据速率给采样和模数转换带来了新的挑战和机遇。这意味着信道特性和系统设计(调制设计、超高数据速率采样、符号结构、RF设计和网络方面)之间存在内在联系,不能再单独考虑。具有紧凑和集成实现的电路设计加强了这种效果,特别是在没有定义良好的参考接口的情况下。它进一步阐明了需要范式转移的THz通信系统在现实环境中的性能预测的概念。执行测量和开发可重构概念以有效评估这些测量的能力对于THz通信系统的进一步发展至关重要。在第一阶段的基础上,我们在所有项目领域都取得了重大成果,我们已经确定了第二阶段THz系统计量学中广泛但密切相关的研究领域,这促使我们申请联合更新提案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Thomas Kürner其他文献
Professor Dr.-Ing. Thomas Kürner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Thomas Kürner', 18)}}的其他基金
Kanalmodellierung und Systemkonzeption zukünftiger Terahertz-Kommunikationssysteme
未来太赫兹通信系统的信道建模和系统构想
- 批准号:
215559577 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants