Information Discovery from Big Earth Observation Data Archives by Learning from Volunteered Geographic Information (IDEAL-VGI)
通过学习志愿地理信息从大地球观测数据档案中发现信息(IDEAL-VGI)
基本信息
- 批准号:424966858
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the last decade, huge amount of remote sensing (RS) images have been acquired, leading to massive Earth Observation (EO) data archives from which mining and retrieving useful information are challenging. Volunteered Geographic Information (VGI) such as OpenStreetMap (OSM) can offer rich geometric and semantic information that goes beyond land use tags, which can be very beneficial for accessing and extracting vital information for observing Earth from big EO data archives. However, user-provided tags within OSM can be noisy, incomplete and redundant. The IDEAL-VGI project addresses very important scientific and practical problems by focusing on the main challenges of: 1) VGI for land use classification which are: a missing framework to exploit the rich semantic information present at different scales and the uncertainty of OSM derived land use classes: and 2) Big EO data, which are: RS image characterization, indexing and search from massive archives. To this end, we will develop innovative methods, which can significantly improve the state-of-the-art both in the theory and in the tools currently available. In particular, novel methods will be developed, aiming to: 1) identification of the importance, uncertainty and quality of different OSM derived features; 2) enhancing methods for better assessment of quality to promote relevant semantic content of OSM and integration of supporting complementary VGI data streams; 3) developing machine learning/deep learning algorithms in the framework of RS image classification for automatic OSM tag refinement and assignment; 4) developing RS image classification, search and retrieval methods that consider OSM tags with their uncertainty information; 5) improve both OSM semantic land use description as well as remote sensing image classification based on a comparison between the two classification approaches; 6) make full use of VGI to generate accurate annotated data sets and improve accuracy of labelling, which should contribute to more convincing training data sets. The IDEAL-VGI will contribute to the following research domains indicated in the priority programme: 1) Information Retrieval and Analysis of VGI (machine learning and algorithmic interpretation for VGI and quality assessment and uncertainty analysis of VGI): and 2) Active Participation, Social Context and Privacy Awareness (information management and decision analysis based on VGI data).
在过去的十年中,人们获取了大量的遥感(RS)图像,产生了大量的地球观测(EO)数据档案,从中挖掘和检索有用信息具有挑战性。 OpenStreetMap (OSM) 等志愿地理信息 (VGI) 可以提供超出土地使用标签范围的丰富几何和语义信息,这对于从大 EO 数据档案中访问和提取观测地球的重要信息非常有益。然而,OSM 中用户提供的标签可能有噪音、不完整且冗余。 IDEAL-VGI 项目通过关注以下主要挑战来解决非常重要的科学和实际问题:1)用于土地利用分类的 VGI,其中:缺少利用不同尺度上存在的丰富语义信息的框架以及 OSM 派生的土地利用类别的不确定性;2)大 EO 数据,即:RS 图像特征、索引和从大量档案中搜索。为此,我们将开发创新方法,这些方法可以显着提高现有理论和工具的最新水平。特别是,将开发新方法,旨在:1)识别不同OSM衍生特征的重要性、不确定性和质量; 2)增强更好的质量评估方法,以促进OSM的相关语义内容和支持补充VGI数据流的集成; 3)在RS图像分类框架下开发机器学习/深度学习算法,用于自动OSM标签细化和分配; 4)开发考虑OSM标签及其不确定性信息的RS图像分类、搜索和检索方法; 5)基于两种分类方法的比较,改进OSM语义土地利用描述以及遥感图像分类; 6)充分利用VGI生成准确的标注数据集,提高标注的准确性,这应该有助于训练数据集更有说服力。 IDEAL-VGI将为优先计划中指出的以下研究领域做出贡献:1)VGI信息检索和分析(VGI的机器学习和算法解释以及VGI的质量评估和不确定性分析):2)积极参与、社会背景和隐私意识(基于VGI数据的信息管理和决策分析)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Begüm Demir, Ph.D.其他文献
Professorin Dr. Begüm Demir, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CICI: TCR: Improving the Robustness of Cyberinfrastructure via Scalable Vulnerability Discovery and Mitigation on "Big Binaries"
CICI:TCR:通过“大型二进制文件”的可扩展漏洞发现和缓解来提高网络基础设施的稳健性
- 批准号:
2232915 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Building Non-centralized Discovery of Big Trajectory Streams: A Hybrid System Design
构建大轨迹流的非集中式发现:混合系统设计
- 批准号:
RGPIN-2020-06797 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Building Non-centralized Discovery of Big Trajectory Streams: A Hybrid System Design
构建大轨迹流的非集中式发现:混合系统设计
- 批准号:
RGPIN-2020-06797 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Discovery of potential core technologies using intellectual property big data in manufacturing companies
利用知识产权大数据发现制造企业潜在核心技术
- 批准号:
21K13354 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Cohesive Subgraph Discovery on Big Bipartite Graphs
大二分图上的内聚子图发现
- 批准号:
DP200101116 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
Enabling knowledge discovery in big visual data
实现大视觉数据中的知识发现
- 批准号:
556448-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
NNA Track 1: Collaborative Research: The Permafrost Discovery Gateway: Navigating the new Arctic tundra through Big Data, artificial intelligence, and cyberinfrastructure
NNA 轨道 1:协作研究:永久冻土发现网关:通过大数据、人工智能和网络基础设施导航新的北极苔原
- 批准号:
2052107 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Discovery of drugs that contribute to the prevention of breast cancer development by big data analysis and in silico prediction
通过大数据分析和计算机预测发现有助于预防乳腺癌发展的药物
- 批准号:
20K16455 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Building Non-centralized Discovery of Big Trajectory Streams: A Hybrid System Design
构建大轨迹流的非集中式发现:混合系统设计
- 批准号:
RGPIN-2020-06797 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
NNA Track 1: Collaborative Research: The Permafrost Discovery Gateway: Navigating the new Arctic tundra through Big Data, artificial intelligence, and cyberinfrastructure
NNA 轨道 1:协作研究:永久冻土发现网关:通过大数据、人工智能和网络基础设施导航新的北极苔原
- 批准号:
1927729 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant