WorldKG: World-Scale Completion of Geographic Knowledge
WorldKG:世界范围的地理知识补全
基本信息
- 批准号:424985896
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
OpenStreetMap (OSM) is a rich source of openly available volunteered geographic information. OSM is adopted by a variety of real-world applications on the Web and beyond, including online route planners and geographic information sites. However, representations of geographic entities in OSM are highly diverse and incomplete, being restricted to few mandatory properties and heterogeneous tags, i.e. user-defined key-value pairs.Recently emerged knowledge graphs (i.e. graph-based knowledge repositories) such as Wikidata, EventKG and DBpedia provide a rich source of contextual information about geographic entities and support semantic queries. For example, in September 2018 Wikidata contained more than 6.4 million entities including locations, points of interest, mountain peaks and others.Whereas knowledge graphs provide a wide range of complementary semantic information for geographic entities, highly useful for Web applications, identity links between OSM and knowledge graphs are still rare and are mainly manually defined by volunteers.The problem of link discovery for OSM datasets is particularly challenging due to the large scale, richness, heterogeneity and different localisation.The main goal of the WordKG project is to facilitate world-scale interlinking of OSM datasets describing different geographic regions with knowledge graphs as well as completion of spatial knowledge in the knowledge graphs using OSM data.This goal is translated into three main objectives:1) Development of methods for world-scale alignment of OSM datasets and knowledge graphs at the schema and instance level.2) Development of methods for VGI-based knowledge graph completion through instance fusion and creation of new semantic instances based on VGI information.3 ) Preparation and release data resulting from these methods in form of the WorldKG knowledge graph that provides comprehensive semantic representation of geographical information and its context.The results of the WorldKG project can substantially benefit applications in mobility, transportation, tourism and logistics domains, as well as provide a basis for informational maps and services through high quality semantic representation of geographical and contextual information.
OpenStreetMap(OSM)是公开可用的志愿地理信息的丰富来源。OSM被网络上和其他地方的各种现实世界应用程序所采用,包括在线路线规划和地理信息网站。然而,OSM中地理实体的表示具有高度的多样性和不完全性,仅限于很少的强制属性和异质标签,即用户定义的键值对;最近出现的知识图(即基于图的知识库),如Wikidata、EventKG和DBpedia,提供了丰富的地理实体上下文信息来源,并支持语义查询。例如,2018年9月,维基数据包含了640多万个实体,包括位置、兴趣点、山峰等。知识图为地理实体提供了广泛的补充语义信息,对Web应用程序非常有用,但OSM和知识图之间的身份链接仍然很少,主要由志愿者手动定义。OSM数据集的链接发现问题由于规模大、内容丰富、WordKG项目的主要目标是促进描述不同地理区域的OSM数据集与知识图的世界级链接,以及使用OSM数据在知识图中完成空间知识。这一目标被转化为三个主要目标:1)在模式和实例级别发展OSM数据集和知识图的世界尺度对齐方法;2)通过实例融合和基于VGI信息创建新的语义实例,开发基于VGI的知识图完成方法。3)准备和发布由这些方法产生的数据以WorldKG知识图的形式其提供了地理信息及其上下文的全面语义表示。WorldKG项目的结果可大大有益于移动性方面的应用,通过对地理信息和背景信息的高质量语义表示,为信息地图和服务提供了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Elena Demidova其他文献
Professorin Dr. Elena Demidova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
- 批准号:81942001
- 批准年份:2019
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: III: Small: Taming Large-Scale Streaming Graphs in an Open World
协作研究:III:小型:在开放世界中驯服大规模流图
- 批准号:
2236578 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: III: Small: Taming Large-Scale Streaming Graphs in an Open World
协作研究:III:小型:在开放世界中驯服大规模流图
- 批准号:
2236579 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
MeVQE: A world-leading centre for MeV scale entanglement physics
MeVQE:世界领先的 MeV 尺度纠缠物理中心
- 批准号:
ST/W006383/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Unpackaged Systems: A real world trial of a circular supply chain solution to scale refills for in-store & online retail
无包装系统:循环供应链解决方案的现实世界试验,用于扩展店内补充品
- 批准号:
10015299 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Demonstrator
Applications of Large-scale Real-world Geospatial Optimization Problems Using Ising Machines
使用伊辛机解决大规模现实世界地理空间优化问题的应用
- 批准号:
21K17747 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ultra-High-Resolution Visualization of 3D Scanned Big Data for Assisting Recognition of Large-Scale 3D Structures in the Real World
3D扫描大数据超高分辨率可视化,辅助识别现实世界中的大型3D结构
- 批准号:
21H04903 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Realising the World Health Organisation targets for elimination of cervical cancer as a public health problem: Effective implementation and scale-up of HPV vaccination and cervical screening in Australia, regionally, and globally
实现世界卫生组织消除宫颈癌这一公共卫生问题的目标:在澳大利亚、区域和全球范围内有效实施和扩大 HPV 疫苗接种和宫颈筛查
- 批准号:
nhmrc : 1194679 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Investigator Grants
Development and Implementation of Real World Scale Artificial Evolutionary Algorithms
现实世界规模人工进化算法的开发和实施
- 批准号:
20K11967 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Leveraging Artificial Intelligence and Computer Vision to Deliver Surgery at Scale in a Post-COVID-19 World
利用人工智能和计算机视觉在后 COVID-19 世界中进行大规模手术
- 批准号:
53904 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Feasibility Studies