Order and Geometry
秩序与几何
基本信息
- 批准号:426572547
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphs and orders defined by means of geometric objects provide a rich class of examples in combinatorics and graph theory. The geometric intuition often guides through constructions that are complex and complicated otherwise. Moreover, graphs and orders defined in terms of geometric objects model dependencies in optimization problems and theoretical computer science. Within this project we focus on the combinatorial side of this realm. The research is grouped into three lines and each line will be motivated by some notoriously open, long-standing problems such as: (1) What is the best possible bound for the chromatic number of intersection graphs of axisaligned rectangles in the plane? (with essentially no progress since the seminal paper by Asplund and Gr¨unbaum in 1960); (2) Is the queue number of planar graphs bounded? (conjectured by Heath, Leighton and Rosenberg in 1992); (3) Is the Boolean dimension of planar posets bounded? (posed by Nesetril and Pudlák in 1989).These problems exemplify different types of interplay between orders (or orderings) and geometry in combinatorics. The basic concept of our research is to understand and exploit these.
通过几何对象定义的图和序在组合数学和图论中提供了丰富的例子。几何直觉常常引导着复杂的结构,否则就很复杂。此外,根据几何对象定义的图形和顺序在优化问题和理论计算机科学中建模依赖性。在这个项目中,我们专注于这个领域的组合方面。本文的研究分为三个部分,每一部分的研究都是围绕一些著名的、长期存在的问题展开的,如:(1)平面中轴对齐矩形相交图的色数的最佳界是什么?(with自1960年Asplund和Grüunbaum的开创性论文以来基本上没有进展);(2)平面图的队列数有界吗?(Heath,Leighton and Rosenberg于1992年发表);(3)平面偏序集的布尔维数有界吗?(由Nesetril和Pudlák在1989年提出)。这些问题描述了组合数学中序(或序)和几何之间不同类型的相互作用。我们研究的基本概念是理解和利用这些。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Stefan Felsner其他文献
Professor Dr. Stefan Felsner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Stefan Felsner', 18)}}的其他基金
Combinatorics of Point Sets and Arrangements of Objects
点集组合和对象排列
- 批准号:
195353047 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Graphenorientierungen in Ebene und Raum
平面和空间中的图形方向
- 批准号:
55908010 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
High-order Geometry, Mesh and Adaptivity for Fluid-Structure Interaction Simulations
流固耦合仿真的高阶几何、网格和自适应性
- 批准号:
RGPIN-2020-06327 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
High-order Geometry, Mesh and Adaptivity for Fluid-Structure Interaction Simulations
流固耦合仿真的高阶几何、网格和自适应性
- 批准号:
RGPIN-2020-06327 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
High-order methods and optimization for complex geometry
复杂几何的高阶方法和优化
- 批准号:
546085-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Computational Riemannian Geometry: High-Order Methods, Analysis, and Structure Preservation
计算黎曼几何:高阶方法、分析和结构保持
- 批准号:
2012427 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
High-order Geometry, Mesh and Adaptivity for Fluid-Structure Interaction Simulations
流固耦合仿真的高阶几何、网格和自适应性
- 批准号:
RGPIN-2020-06327 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
High-order methods and optimization for complex geometry
复杂几何的高阶方法和优化
- 批准号:
546085-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
A study of geometry of higher order partial differential equations equipped with singularities
具有奇点的高阶偏微分方程的几何研究
- 批准号:
15K17543 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Contact geometry of partial differential equations of third order
三阶偏微分方程的接触几何
- 批准号:
15K21058 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Geometry optimization of sound-propagating flows in complex-shaped spaces based on a higher-order scheme
基于高阶格式的复杂形状空间中声传播流的几何优化
- 批准号:
15K04759 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
reduced-order models for non-linear vibration of shells with complex geometry
复杂几何壳体非线性振动的降阶模型
- 批准号:
393103-2010 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral