Optical probing and control of heat propagation at the nanoscale
纳米尺度热传播的光学探测和控制
基本信息
- 批准号:426728715
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most fundamental and critical issues that applies to the majority of nanoscale electronic and optoelectronic devices is the effective dissipation of heat. Heating is also detrimental to the durability of novel solar cell materials including polymer and hybrid halide perovskite thin films. At the same time, the targeted delivery of heat energy opens up promising new possibilities for thermotherapy and other applications based on local thermal stimuli. Thermal management and transport is particularly critical for nanoparticles and structures, which due to their small volume and hence heat capacity are extremely sensitive to overheating and heat-related failure. For obvious reasons, popular cooling methods known from the macroworld cannot be directly applied at the nanoscale. Therefore, a number of different approaches that enable heat flow/dissipation have been recently presented and experimentally tested. It has been shown, for instance, that heat can propagate very efficiently through quasi 1D nanostructures such as metallic nanowires and carbon nanotubes. Presented solutions, however, do not allow for the control of the efficiency of heat flow.We propose to address the issue of heat dissipation in nanosystems by developing and optimizing microscopic tools for nanoscale temperature probing and by designing new materials that allow to (optically) control heat transport. Our approach is based on the photo-controlled temperature sensing and cooling properties of rare-earth ions embedded in dielectric nanocrystals. Here, we exploit the well-known temperature dependent intensity ratios of the multiple photoluminescence emission lines of the rare-earth ions to measure local temperatures. In a scanning probe approach, rare-earth ion doped nanocrystals will be used to record temperature maps with sub 50 nm spatial resolution. Directional heat transport will be implemented by metallic nanowires reaching length scales up to several tens of micrometers. Local optical cooling will be achieved using phonon-assisted absorption and, in a second scheme, by a pointed metal probe. Finally, we will combine the developed functionalities to demonstrate the remote-controlled release of substances through nanowire-mediated heat transport. The added value of this collaboration is that it brings together two teams with the complementary expertise needed to address important questions in the field of thermal transport on the nanometer to micrometer scale. The NCU team has in depth experience in nanowire plasmonics and the photophysics of rare-earth ions together with material fabrication and handling. The LMU team, on the other hand, has strong expertise in near-field optical microscopy and spectroscopy as well as other scanning probe techniques. The results of the present project will be important for the development of both nanoscale heating and cooling schemes and respective applications in nanoelectronics, optoelectronics as well as thermotherapy.
适用于大多数纳米级电子和光电器件的最基本和最关键的问题之一是有效散热。加热也对包括聚合物和混合卤化物钙钛矿薄膜的新型太阳能电池材料的耐久性有害。同时,热能的定向输送为热疗和其他基于局部热刺激的应用开辟了新的可能性。热管理和传输对于纳米颗粒和结构尤其重要,由于其体积小,因此热容量对过热和与热相关的故障极其敏感。由于显而易见的原因,从宏观世界中已知的流行冷却方法不能直接应用于纳米级。因此,最近已经提出了许多不同的方法,使热流/散热和实验测试。例如,已经表明,热量可以非常有效地通过准一维纳米结构(如金属纳米线和碳纳米管)传播。提出的解决方案,但是,不允许控制的热flow.We的效率建议,以解决在纳米系统中的散热问题,通过开发和优化微观工具,纳米级的温度探测和设计新的材料,允许(光学)控制热传输。我们的方法是基于光控制的温度传感和冷却性能的稀土离子嵌入在介电纳米晶体。在这里,我们利用众所周知的温度依赖的强度比的多个光致发光发射线的稀土离子来测量局部温度。在扫描探针方法中,稀土离子掺杂的纳米晶体将用于记录具有低于50 nm空间分辨率的温度图。定向热传输将通过达到几十微米的长度尺度的金属纳米线来实现。局部光学冷却将使用声子辅助吸收,并在第二个方案中,由尖金属探针。最后,我们将结合联合收割机开发的功能,以证明远程控制释放的物质,通过电热介导的热传输。这种合作的附加值是,它汇集了两个团队,他们拥有解决纳米到微米尺度热传输领域重要问题所需的互补专业知识。NCU团队在纳米线等离子体和稀土离子物理学以及材料制造和处理方面拥有丰富的经验。另一方面,LMU团队在近场光学显微镜和光谱学以及其他扫描探针技术方面拥有强大的专业知识。本项目的结果将是重要的纳米级加热和冷却方案的发展和各自的应用在纳米电子学,光电子学以及热疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Achim Hartschuh其他文献
Professor Dr. Achim Hartschuh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Achim Hartschuh', 18)}}的其他基金
Coherent Control of Plasmonic Hotspots in Nanoantennas
纳米天线中等离子体热点的相干控制
- 批准号:
326694053 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
ERA NanoSci - Electrically-Excited Surface Plasmon Nanosources Based on Carbon Nanotube Light Emission
ERA NanoSci - 基于碳纳米管发光的电激发表面等离子体纳米源
- 批准号:
118701971 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Adaptive control of tip-enhanced near-field optical signals in carbon nanotubes
碳纳米管尖端增强近场光信号的自适应控制
- 批准号:
137747659 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Exciton dynamics and energies in single carbon nanotubes
单碳纳米管中的激子动力学和能量
- 批准号:
62113739 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Nanoscale optical imaging of electronic and vibronic states in carbon nanotubes
碳纳米管中电子和振动状态的纳米级光学成像
- 批准号:
24779302 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Probing matter-antimatter asymmetry with the muon electric dipole moment
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
- 批准号:11805087
- 批准年份:2018
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing an increased reliance on reticulospinal motor pathways in chronic hemiparetic stroke with advanced spinal cord functional MRI
利用先进的脊髓功能 MRI 探讨慢性偏瘫卒中对网状脊髓运动通路的依赖性增加
- 批准号:
10750576 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Probing the role of feature dimension maps in visual cognition
探讨特征维度图在视觉认知中的作用
- 批准号:
10720841 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Probing 2D material properties using ultrafast Quantum Interference Control
使用超快量子干涉控制探测 2D 材料特性
- 批准号:
559996-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Probing silent cerebral infarct pathogenesis in sickle cell disease with cerebrovascular MRI
脑血管MRI探讨镰状细胞病无症状脑梗死发病机制
- 批准号:
10798118 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Project 2: Pharmacological Probing of Sleep Physiology in Autism
项目2:自闭症睡眠生理学的药理学探索
- 批准号:
10698075 - 财政年份:2022
- 资助金额:
-- - 项目类别:
CRCNS US-France Research Proposal: Probing the Dorsolateral Prefrontal Cortex and Central Executive Network for Improving Neuromodulation in Depression
CRCNS 美法研究提案:探索背外侧前额叶皮层和中央执行网络以改善抑郁症的神经调节
- 批准号:
10612989 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Probing ER stress signaling with orthogonal control of receptor oligomerization
通过受体寡聚化的正交控制探索内质网应激信号传导
- 批准号:
10665915 - 财政年份:2022
- 资助金额:
-- - 项目类别:
CRCNS US-France Research Proposal: Probing the Dorsolateral Prefrontal Cortex and Central Executive Network for Improving Neuromodulation in Depression
CRCNS 美法研究提案:探索背外侧前额叶皮层和中央执行网络以改善抑郁症的神经调节
- 批准号:
10561527 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Project 2: Pharmacological Probing of Sleep Physiology in Autism
项目2:自闭症睡眠生理学的药理学探索
- 批准号:
10531475 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Probing How Living Bacterial Membranes Control Small Molecule Uptake
探究活细菌膜如何控制小分子摄取
- 批准号:
10276142 - 财政年份:2021
- 资助金额:
-- - 项目类别: