Coherent Control of Plasmonic Hotspots in Nanoantennas
纳米天线中等离子体热点的相干控制
基本信息
- 批准号:326694053
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Metal plasmonic nanoantennas can be used to confine light on the nanometer scale, and to enhance the optical signals of sample objects in their proximity or the nanoantenna itself. This capability of creating optical hotspots, together with their virtually unlimited diversity in size, shape, and material composition opened up a wide range of applications and continues to stimulate enormous research efforts in the field of plasmonics. Non-linear optics and spectroscopy, in particular, have the potential to strongly benefit from local field enhancement provided by surface plasmon resonances due to their higher order field dependence. Furthermore, the fast response time of localized surface plasmons, typically below 10 fs, makes them potentially suitable for ultrafast applications, for example in optical information processing, switching and spectroscopy. In this project we aim at controlling the non-linear hotspot distribution inside single nanoantennas using ultrafast laser pulse shaping microscopy. Our approach is based on the hypothesis that phase shaping can be used to manipulate the superposition of spatially distinct plasmon modes and of their spectral interference that generates the second harmonic response of the nanoantenna. First, we will show that by varying only the spectral phase of a broadband laser pulse, the spatial distribution of the second harmonic generation (SHG) can be manipulated with nanometer accuracy. This spatial control is detected using a super-resolution approach, in which we track the peak position of the SHG signal in the far-field and by tip-enhanced near-field experiments. Numerical simulations will be carried out to support the observed shifts in the hotspot distributions and to guide the design of optimized nanoantennas providing maximum controllability. In addition to deterministic phase variations we will use self-learning algorithms in both simulations and experiments. Second, we aim at controlling the angular distribution of the second harmonic light emitted by the nanoantenna, which would confirm our hypothesis of spatial-spectral interference. Third, we will investigate if the achieved hotspot-control can be utilized for the time and spatially resolved spectroscopy of nanomaterials. To this end we will deposit a selected set of 2D materials including graphene, MoSe2 and MoS2 on the nanoantennas that provide maximum controllability using well-established polymer transfer. Using two phase-controlled pulses with varying temporal delay, we will create two different hotspot distributions acting as pump and probe pulses. We will then spatially track the distinct optical responses of the 2D materials together with the SHG of the nanoantenna to probe possible time dependent correlations. Our results will substantially improve our understanding of non-linear plasmonics and coherent control and are expected to provide new insight into the non-local optical properties of 2D materials on the nanoscale.
金属等离子体纳米天线可用于将光限制在纳米尺度上,并增强其附近的样品物体或纳米天线本身的光信号。这种创造光学热点的能力,以及它们在尺寸、形状和材料组成上几乎无限的多样性,开辟了广泛的应用,并继续刺激等离子体领域的巨大研究努力。特别是非线性光学和光谱学,由于其高阶场依赖性,具有强烈受益于由表面等离子体共振提供的局部场增强的潜力。此外,局域表面等离子体激元的快速响应时间(通常低于10 fs)使它们潜在地适用于超快应用,例如在光学信息处理、开关和光谱学中。在这个项目中,我们的目标是使用超快激光脉冲整形显微镜控制单纳米天线内的非线性热点分布。我们的方法是基于这样的假设,即相位整形可以用来操纵空间上不同的等离子体模式的叠加和它们的光谱干扰,产生的纳米天线的二次谐波响应。首先,我们将表明,通过改变只有光谱相位的宽带激光脉冲,二次谐波产生(SHG)的空间分布可以操纵纳米精度。这种空间控制检测使用超分辨率的方法,在该方法中,我们跟踪的SHG信号的峰值位置在远场和尖端增强近场实验。将进行数值模拟,以支持观察到的热点分布的变化,并指导优化的纳米天线的设计,提供最大的可控性。除了确定性的相位变化,我们将在模拟和实验中使用自学习算法。其次,我们的目标是控制纳米天线发射的二次谐波光的角分布,这将证实我们的空间光谱干涉的假设。第三,我们将调查,如果实现热点控制可以用于纳米材料的时间和空间分辨光谱。为此,我们将在纳米天线上存款一组选定的2D材料,包括石墨烯、MoSe 2和MoS 2,这些材料使用公认的聚合物转移提供最大的可控性。使用两个具有不同时间延迟的相位控制脉冲,我们将创建两个不同的热点分布作为泵浦和探测脉冲。然后,我们将在空间上跟踪2D材料的不同光学响应以及纳米天线的SHG,以探测可能的时间相关性。我们的研究结果将大大提高我们对非线性等离子体激元和相干控制的理解,并有望为纳米级二维材料的非局部光学特性提供新的见解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient optimization of SHG hotspot switching in plasmonic nanoantennas using phase-shaped laser pulses controlled by neural networks.
使用神经网络控制的相形激光脉冲有效优化等离子体纳米天线中的 SHG 热点切换
- DOI:10.1364/oe.26.033678
- 发表时间:2018
- 期刊:
- 影响因子:3.8
- 作者:A. Comin;A. Hartschuh
- 通讯作者:A. Hartschuh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Achim Hartschuh其他文献
Professor Dr. Achim Hartschuh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Achim Hartschuh', 18)}}的其他基金
Optical probing and control of heat propagation at the nanoscale
纳米尺度热传播的光学探测和控制
- 批准号:
426728715 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
ERA NanoSci - Electrically-Excited Surface Plasmon Nanosources Based on Carbon Nanotube Light Emission
ERA NanoSci - 基于碳纳米管发光的电激发表面等离子体纳米源
- 批准号:
118701971 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Adaptive control of tip-enhanced near-field optical signals in carbon nanotubes
碳纳米管尖端增强近场光信号的自适应控制
- 批准号:
137747659 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Exciton dynamics and energies in single carbon nanotubes
单碳纳米管中的激子动力学和能量
- 批准号:
62113739 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Nanoscale optical imaging of electronic and vibronic states in carbon nanotubes
碳纳米管中电子和振动状态的纳米级光学成像
- 批准号:
24779302 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
DYnamic control in hybrid plasmonic NAnopores: road to next generation multiplexed single MOlecule detection
混合等离子体纳米孔的动态控制:下一代多重单分子检测之路
- 批准号:
EP/X038009/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
- 批准号:
2118389 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
- 批准号:
2118420 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Ultimate control of nano-localized plasmonic fields
纳米局域等离子体场的最终控制
- 批准号:
21H04657 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
- 批准号:
2118333 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Plasmonic Optical Metafilm and Metascreen Structures for Subwavelength Electromagnetic Field Control
用于亚波长电磁场控制的等离激元光学超薄膜和超屏幕结构
- 批准号:
519210-2018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Plasmonic Optical Metafilm and Metascreen Structures for Subwavelength Electromagnetic Field Control
用于亚波长电磁场控制的等离激元光学超薄膜和超屏幕结构
- 批准号:
519210-2018 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Control of electronic states of organic materials using plasmonic WGM
使用等离子体 WGM 控制有机材料的电子态
- 批准号:
19K05632 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control of multiexciton relaxation process by using plasmonic nanostructures
利用等离子体纳米结构控制多激子弛豫过程
- 批准号:
18H01958 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Plasmonic Optical Metafilm and Metascreen Structures for Subwavelength Electromagnetic Field Control
用于亚波长电磁场控制的等离激元光学超薄膜和超屏幕结构
- 批准号:
519210-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral