Nanoscale optomechanical interactions in semiconductor microcavities

半导体微腔中的纳米级光机械相互作用

基本信息

项目摘要

Microcavity exciton polaritons (to be denoted as polaritons) are bosonic matter-wave excitations resulting from the strong coupling between quantum well (QW) excitons and photons in a semiconductor microcavity (MC). Polaritons thus combine the long spatial coherence of photons with strong inter-particle interactions resulting from the excitonic component. The low effective mass together with the bosonic character enables the formation of polariton condensates with long spatial (tens of m) and time (100’s of ps) coherences at relatively low particle densities and high temperatures (i.e., liquid He temperatures for (Al,Ga)As structures). The objective of the present project is to investigate the resonant acousto-optical interaction between polaritons (and their condensates) and longitudinal acoustic phonons (denoted as gAPs) guided along the spacer layer of a structured polariton MC. We will develop a new platform for polariton-phonon coupling, which enables the simultaneous confinement of a high density of polaritons and phonons at the same spatial location. In this platform, the spectrally narrow polariton resonances (in particular, in the condensation regime) will enable the detection of gAP effects with high sensitivity. The platform will be used for accessing two complementary aspects of the resonant acousto-optical interactions. The first explores the modulation of polaritons by GHz gAPs for the formation of dynamic polariton lattices. These tunable lattices can be regarded as solid-state analogs to optical lattices of cold atoms. The polariton-phonon platform supporting high frequency (several GHz) and sub-micrometer wavelengths phonons will provide access to a regime of small spatial and time modulation periods, not possible in existing modulation schemes. The second aspect of the project will take advantage of the strong acousto-optic back-action induced by the high polariton density to control the generation, propagation, and guiding of gAPs in structured MCs.
微腔激子极化激元(以下简称极化激元)是半导体微腔中量子阱激子与光子强耦合产生的玻色子物质波激发。因此,极化激元将光子的长空间相干性与由激子分量产生的强粒子间相互作用结合联合收割机。低有效质量与玻色子特性一起使得能够在相对低的粒子密度和高温下(即,(Al,Ga)As结构的液态He温度)。本项目的目的是研究极化激元(及其凝聚体)和纵向声学声子(记为gAP)之间的共振声光相互作用,引导沿着结构极化激元MC的间隔层。我们将开发一个新的极化激元-声子耦合平台,使高密度的极化激元和声子同时限制在同一空间位置。在该平台中,光谱窄的极化激元共振(特别是,在凝聚状态中)将使得能够以高灵敏度检测间隙效应。该平台将用于访问谐振声光相互作用的两个互补方面。第一个探索的调制极化激元的GHz间隙的形成动态极化激元晶格。这些可调晶格可以被看作是冷原子光学晶格的固态类似物。支持高频(几GHz)和亚微米波长声子的极化激元-声子平台将提供对小空间和时间调制周期的机制的访问,这在现有调制方案中是不可能的。该项目的第二个方面将利用由高极化激元密度引起的强声光反作用来控制结构MC中间隙的产生、传播和引导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Paulo V. Santos其他文献

Dr. Paulo V. Santos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Paulo V. Santos', 18)}}的其他基金

Manipulation of single electrons and single excitons by surface acoustic waves
通过表面声波操纵单电子和单激子
  • 批准号:
    284105099
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dipolar exciton hydrodynamics, controlled interactions and multi-functional integration: towards an exciton-based opto-electronic multiplexer
偶极激子流体动力学、受控相互作用和多功能集成:基于激子的光电多路复用器
  • 批准号:
    185150896
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spin transport and manipulation in GaAs quantum wells using surface acoustic waves
使用表面声波在砷化镓量子阱中自旋输运和操纵
  • 批准号:
    41754965
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Dynamic Modulation of Photonic Crystals by Surface Acoustic Waves
表面声波动态调制光子晶体
  • 批准号:
    5318474
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Optical modulation of low-dimensional semiconductor structures by surface acoustic waves
通过表面声波对低维半导体结构进行光调制
  • 批准号:
    5249806
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Compact Optomechanical Seismic Sensors for LIGO
用于 LIGO 的紧凑型光机地震传感器
  • 批准号:
    2426360
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Highly efficient quantum conversion optomechanical systems for quantum networks
用于量子网络的高效量子转换光机械系统
  • 批准号:
    23KF0203
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Highly efficient quantum conversion optomechanical systems for quantum networks
用于量子网络的高效量子转换光机械系统
  • 批准号:
    23K19196
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel optomechanical entanglement
新型光机纠缠
  • 批准号:
    23KF0087
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Correlative optomechanical microscope
相关光机显微镜
  • 批准号:
    521330785
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Superconducting Electro-Optomechanical Photon Converter
超导电光机械光子转换器
  • 批准号:
    RGPIN-2020-04537
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Like a candle in the wind: flicker noise in nano-optomechanical systems
就像风中的蜡烛:纳米光机械系统中的闪烁噪声
  • 批准号:
    RGPIN-2020-05978
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Optomechanical generation of non-classical states and exploration of gravitational decoherence mechanisms
非经典态的光机械生成及引力退相干机制的探索
  • 批准号:
    567689-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
PM: Optomechanical Dark Matter Detectors
PM:光机械暗物质探测器
  • 批准号:
    2209473
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Compact Optomechanical Seismic Sensors for LIGO
用于 LIGO 的紧凑型光机地震传感器
  • 批准号:
    2207794
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了