Understanding and modeling atmospheric subgrid processes with deep learning
通过深度学习理解和建模大气子网格过程
基本信息
- 批准号:426852073
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the face of global warming accurate climate predictions are urgently needed. Current climate models, however, still suffer from large uncertainties, which are mainly caused by the approximate representation, also called parameterization, of clouds smaller than the model grid scale. Cloud processes and their interactions with turbulence and radiation are highly chaotic, making traditional parameterization development, based on physical intuition and manual tuning, slow and cumbersome. Recently, it has become possible to run global high-resolution simulations which explicitly resolve complex cloud processes. These simulations are computationally expensive, however, which limits their prediction horizon to a few months at most. Nevertheless, such short-term datasets could be exploited to develop better parameterizations for climate models. In this project, deep learning will be used to systematically leverage short-term high-resolution simulations for climate simulations. Deep learning, a branch of artificial intelligence, is based on multi-layered artificial neural networks, which can learn complex nonlinear relations. In 2018, first studies, including the applicant's, have demonstrated the general feasibility of building a deep learning subgrid parameterization for climate models using high-resolution data. One key objective of the proposed work is to use cutting-edge machine learning techniques to improve the numerical stability and physical consistency of these early studies in order to run realistic climate simulations. Another key goal is to use deep learning parameterizations to learn about the subgrid processes themselves. Deep learning has proven to be an excellent fit for modeling processes with spatial and temporal structure, which are also important in the atmosphere but are not included in most current parameterizations. The proposed deep learning approach allows probing the rich high-resolution dataset for the importance of spatial and temporal structures, as well as process interactions. Building better climate models requires a more efficient use of data. Deep learning provides one way of doing so. The proposed work plan aims to develop essential methodology in order to achieve real climate simulations with a machine learning approach but also to use this novel technology to extract insight from the most detailed simulations ever available. Further, this project will help to bridge the gap between cutting-edge machine learning research and climate modeling.
面对全球变暖,迫切需要准确的气候预测。然而,当前的气候模式仍然存在很大的不确定性,这主要是由小于模式网格尺度的云的近似表示引起的,也称为参数化。云过程及其与湍流和辐射的相互作用是高度混乱的,这使得传统的基于物理直觉和手动调整的参数化发展缓慢而繁琐。最近,已经有可能运行全球高分辨率模拟,明确地解决复杂的云过程。然而,这些模拟的计算成本很高,这将它们的预测范围限制在至多几个月。然而,这种短期数据集可以被用来开发更好的气候模型参数。在这个项目中,深度学习将被用于系统地利用短期高分辨率模拟来进行气候模拟。深度学习是人工智能的一个分支,它基于多层人工神经网络,可以学习复杂的非线性关系。2018年,包括申请人在内的第一批研究证明了使用高分辨率数据为气候模型建立深度学习次网格参数化的总体可行性。拟议工作的一个关键目标是使用尖端机器学习技术来提高这些早期研究的数值稳定性和物理一致性,以便进行现实的气候模拟。另一个关键目标是使用深度学习参数来了解子网格过程本身。深度学习已被证明非常适合于模拟具有空间和时间结构的过程,这些过程在大气中也很重要,但没有包括在大多数当前的参数化中。提出的深度学习方法允许探测丰富的高分辨率数据集的空间和时间结构以及过程交互的重要性。建立更好的气候模型需要更有效地使用数据。深度学习提供了这样做的一种方式。拟议的工作计划旨在开发基本的方法,以便用机器学习的方法实现真实的气候模拟,但也要使用这一新技术从有史以来最详细的模拟中提取洞察力。此外,该项目将有助于弥合尖端机器学习研究和气候建模之间的差距。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Potential and Limitations of Machine Learning for Modeling Warm‐Rain Cloud Microphysical Processes
机器学习在暖雨云微物理过程建模中的潜力和局限性
- DOI:10.1029/2020ms002301
- 发表时间:2020
- 期刊:
- 影响因子:6.8
- 作者:Seifert
- 通讯作者:Seifert
Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems
- DOI:10.1103/physrevlett.126.098302
- 发表时间:2021-03-04
- 期刊:
- 影响因子:8.6
- 作者:Beucler, Tom;Pritchard, Michael;Gentine, Pierre
- 通讯作者:Gentine, Pierre
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Stephan Rasp其他文献
Dr. Stephan Rasp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
- 批准号:
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
ABM有效性检验的关键技术研究
- 批准号:70701001
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
三峡库区以流域为单元森林植被对洪水影响研究
- 批准号:30571486
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
EMBRACE-AGS-Seed: Decadal Trends of Atmospheric Ethane - Building Capacity for Trace Gas Analysis and Modeling at Portland State University
EMBRACE-AGS-Seed:大气乙烷的十年趋势 - 波特兰州立大学痕量气体分析和建模能力建设
- 批准号:
2409413 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Laboratory and Modeling Studies to Resolve a Grand Challenge for Upper Atmospheric Science
合作研究:实验室和模型研究解决高层大气科学的巨大挑战
- 批准号:
2312192 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Wearable Microsystem for Continuous Personalized Aerosol Exposure Assessment
用于连续个性化气溶胶暴露评估的可穿戴微系统
- 批准号:
10747130 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Effects of daily low oxygen exposure on weight status, body composition, and metabolic health
每日低氧暴露对体重状况、身体成分和代谢健康的影响
- 批准号:
10756039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Wildfire Smoke Exposure in Pregnancy and Risk of Structural Birth Defects
怀孕期间野火烟雾暴露与结构性出生缺陷的风险
- 批准号:
10641192 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Synergistic Effects of Stress and Traffic-Related Air Pollution on Cardiovascular Health
压力和交通相关空气污染对心血管健康的协同效应
- 批准号:
10560427 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Determine the role of atmospheric particulate matter pollutants in contributing to Lewy Body Dementia
确定大气颗粒物污染物在路易体痴呆症中的作用
- 批准号:
10662930 - 财政年份:2023
- 资助金额:
-- - 项目类别:
U.S.-Ireland R&D Partnership: AQUASORB: Predictive Modeling of Atmospheric Water Sorption
美国-爱尔兰 R
- 批准号:
2154882 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Sustainability: Atmospheric Physics Needs for Community Climate Modeling
可持续性:社区气候建模所需的大气物理
- 批准号:
2311376 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




