Detection, risk stratification and therapy monitoring of hepatocellular carcinoma – a deep learning approach based on iodine maps derived from dual energy computed tomography
肝细胞癌的检测、风险分层和治疗监测——基于双能计算机断层扫描碘图的深度学习方法
基本信息
- 批准号:426969820
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Primary liver cancer is the sixth most common cancer type worldwide and the fourth major cause of cancer deaths, while hepatocellular carcinoma (HCC) represents its most common form. For diagnosis of HCC based on dynamic, contrast-enhanced computed tomography (CT) or magnetic resonance imaging, there are defined diagnostic criteria (LI-RADS) which, inter alia, are based on tumor perfusion. These perfusion patterns can be determined more accurately in dual-energy CT-derived iodine maps as compared to conventional CT as they allow for precise quantification of iodinated contrast media. Previous studies have shown that these iodine maps can be used to improve diagnosis of HCC, particularly in diagnostically challenging cases (e.g. very small HCC lesions). Moreover, it was shown that they can be beneficial for the response assessment of patients who underwent locoregional tumor therapy (e.g. microwave ablation, radiofrequency ablation, transarterial chemoembolization). On the other hand, advanced machine learning methods continuously gain importance in almost every field of radiology. One of these methods, the so-called deep learning, has been shown to be beneficial for imaging of HCC as well. In this project, quantitative iodine maps derived by several different dual-energy CT scanners will be transferred to deep learning models to assess whether the combination of these two emerging technologies is beneficial in terms of detection and differentiation of HCC and its risk stratification and therapy monitoring in patients who underwent locoregional tumor therapy.
原发性肝癌是全球第六大常见癌症类型,也是癌症死亡的第四大主要原因,而肝细胞癌(HCC)是其最常见的形式。对于基于动态对比增强计算机断层扫描(CT)或磁共振成像的HCC诊断,存在定义的诊断标准(LI-RADS),其阿利亚基于肿瘤灌注。与常规CT相比,双能量CT衍生碘标测图可以更准确地确定这些灌注模式,因为它们允许碘化造影剂的精确定量。先前的研究表明,这些碘图可用于改善HCC的诊断,特别是在诊断具有挑战性的病例中(例如非常小的HCC病变)。此外,研究表明,它们有助于对接受局部肿瘤治疗(例如微波消融、射频消融、经动脉化疗栓塞)的患者进行反应评估。另一方面,先进的机器学习方法在放射学的几乎每个领域都越来越重要。其中一种方法,即所谓的深度学习,已被证明对HCC的成像也是有益的。在该项目中,由几种不同的双能CT扫描仪得出的定量碘图将被转移到深度学习模型中,以评估这两种新兴技术的组合是否有利于检测和区分HCC及其在接受局部肿瘤治疗的患者中的风险分层和治疗监测。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Virtual Unenhanced Images
虚拟未增强图像
- DOI:10.1097/rli.0000000000000802
- 发表时间:2022
- 期刊:
- 影响因子:6.7
- 作者:Lennartz S;Pisuchpen N;Parakh A;Baliyan V;Sahani D;Hahn PF;Kambadakone A
- 通讯作者:Kambadakone A
Inter-scan and inter-scanner variation of quantitative dual-energy CT: evaluation with three different scanner types
- DOI:10.1007/s00330-020-07611-0
- 发表时间:2021-01
- 期刊:
- 影响因子:5.9
- 作者:S. Lennartz;A. Parakh;Jinjin Cao;D. Zopfs;N. Grosse Hokamp;A. Kambadakone
- 通讯作者:S. Lennartz;A. Parakh;Jinjin Cao;D. Zopfs;N. Grosse Hokamp;A. Kambadakone
Robustness of dual-energy CT-derived radiomic features across three different scanner types
- DOI:10.1007/s00330-021-08249-2
- 发表时间:2021-09-20
- 期刊:
- 影响因子:5.9
- 作者:Lennartz, Simon;O'Shea, Aileen;Kambadakone, Avinash
- 通讯作者:Kambadakone, Avinash
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Simon Lennartz其他文献
Dr. Simon Lennartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于影像代谢重塑可视化的延胡索酸水合酶缺陷型肾癌危险性分层模型的研究
- 批准号:82371912
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
面向人工智能生成内容的风险识别与治理策略研究
- 批准号:72304290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于移动健康技术干预动脉粥样硬化性心血管疾病高危人群的随机对照现场试验:The ASCVD Risk Intervention Trial
- 批准号:81973152
- 批准年份:2019
- 资助金额:54.0 万元
- 项目类别:面上项目
基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
- 批准号:71903144
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
RISK通路在胃泌素介导的心脏缺血再灌注损伤保护中的作用研究
- 批准号:81800239
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
异氟烷基于TLR4/RISK/NF-κB调控糖尿病缺血性脑卒中后NLRP3炎症小体形成的机制研究
- 批准号:81771232
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
Notch1与RISK/SAFE/HIF-1α信号通路整合在I-postC保护中的作用及其机制
- 批准号:81260024
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
基于VaR的水资源短缺风险综合模型体系与应用
- 批准号:51279006
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
黄淮海平原典型区域土壤盐渍化演变机制与发生风险防控对策研究
- 批准号:41171178
- 批准年份:2011
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Early Detection of Right Ventricular Dysfunction and Emerging Pulmonary Hypertension in Systemic Sclerosis
系统性硬化症患者右心室功能障碍和肺动脉高压的早期发现
- 批准号:
10585312 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Airway Basal Progenitor Dysfunction in the Detection, Progression and Pathogenesis of Early COPD
气道基础祖细胞功能障碍在早期 COPD 的检测、进展和发病机制中的作用
- 批准号:
10737267 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Autoantibodies to tumor-derived neoepitopes as biomarkers and immunoPET agents for the early detection of small cell lung cancer
肿瘤衍生新表位的自身抗体作为生物标志物和免疫 PET 试剂用于小细胞肺癌的早期检测
- 批准号:
10715807 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Validation of novel imaging and molecular tests for early detection of pancreatic cancer through risk-stratified community engagement programs
通过风险分层社区参与计划验证用于早期检测胰腺癌的新型成像和分子测试
- 批准号:
10640704 - 财政年份:2023
- 资助金额:
-- - 项目类别:
STRATIFYHF: Artificial intelligence-based decision support system for risk stratification and early detection of heart failure in primary and secondary care
STRATIFYHF:基于人工智能的决策支持系统,用于初级和二级护理中心力衰竭的风险分层和早期检测
- 批准号:
10073472 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EU-Funded
Advancing the Clinical Translation of Cyst Fluid Assays for Early Detection of Pancreatic Cancer
推进囊肿液检测的临床转化以早期检测胰腺癌
- 批准号:
10639705 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Early detection of pulmonary complications of hematopoietic stem-cell transplantation in children using hyperpolarized xenon MRI
超极化氙MRI早期发现儿童造血干细胞移植肺部并发症
- 批准号:
10563271 - 财政年份:2023
- 资助金额:
-- - 项目类别:
An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
- 批准号:
10564824 - 财政年份:2023
- 资助金额:
-- - 项目类别:
STRATIFYHF: Artificial intelligence-based decision support system for risk stratification and early detection of heart failure in primary and secondary care
STRATIFYHF:基于人工智能的决策支持系统,用于初级和二级护理中心力衰竭的风险分层和早期检测
- 批准号:
10078118 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EU-Funded