Polyoxotungstate Functionalization in the Context of Molecular Spintronics

分子自旋电子学背景下的多钨酸官能化

基本信息

项目摘要

The development of molecule-based spintronics, i.e. the exploitation of charge transport phenomena associated with the correlated molecular charge and spin states, requires particular molecular materials that allow for a versatile magnetic functionalization and reproducible electric contact modes. High-nuclearity structure types of polyoxotungstates are especially promising in this context, as they exhibit high thermal stability, a multitude of W(VI)/W(V)-based redox processes with virtually no structural changes, and multidentate ligand functionality that enables the integration of complex heterometal-based spin structures into the polyoxotungstate scaffolds.This project centers on the development of novel synthesis strategies for the (post-) functionalization of magnetic polyoxotungstates with the eventual aim to allow precise electrical contacts to such molecules, e.g. in two-junction scanning tunneling microscopy experiments. This would, for the first time, enable a systematic investigation of the spintronics characteristics of such systems. The project emphasizes the use of organophosphonates and especially organoarsonates, which recently have shown particular promise for achieving and controlling key aspects ranging from charge and solubility, stability in solution, chemisorption onto metal substrates and formation of ordered monolayers, to the integration of novel heterometal substructures and evolution of previously unknown cluster architectures. Here, the use of organoarsonates can circumvent certain limitations pertinent to other, already established organic functionalization techniques. Furthermore, next to the targeted spintronics materials properties, our preliminary results also point to a great potential of the hitherto nearly unknown RAsO3 functionalization of polyoxotungstates as a general pathway to significantly expand their structural chemistry, with the prospect of realizing unprecedented cluster types.
基于分子的自旋电子学的发展,即利用与分子电荷和自旋态相关的电荷输运现象,需要特殊的分子材料来允许多种多样的磁性官能化和可重复的电接触模式。在这种背景下,高核度结构类型的多氧钨酸盐尤其有希望,因为它们表现出高的热稳定性,大量基于W(VI)/W(V)的氧化还原过程几乎没有结构变化,以及多齿配体功能,使得复杂的基于异金属的自旋结构能够集成到多氧钨酸盐支架中。本项目的中心是开发新的合成策略,用于磁性多氧钨酸盐的(后)官能化,最终目标是允许此类分子的精确电接触,例如在双结扫描隧道显微镜实验中。这将首次使系统地研究这类系统的自旋电子学特性成为可能。该项目强调使用有机膦酸盐,特别是有机砷酸盐,最近显示出在实现和控制关键方面的特别前景,从电荷和溶解性、溶液稳定性、在金属衬底上的化学吸附和有序单分子膜的形成,到新的异金属亚结构的整合和以前未知的团簇结构的演变。在这里,使用有机芳酸酯可以绕过与其他已经建立的有机官能化技术相关的某些限制。此外,除了目标自旋电子学材料的性质外,我们的初步结果还表明,迄今为止几乎未知的多氧钨酸盐的RAsO_3官能化具有巨大的潜力,可以显著扩展其结构化学,具有实现前所未有的团簇类型的前景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natalya V. Izarova, Ph.D.其他文献

Natalya V. Izarova, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natalya V. Izarova, Ph.D.', 18)}}的其他基金

Noble Metal (Pd, Pt and Au) Based Polyoxometalates
贵金属(Pd、Pt 和 Au)基多金属氧酸盐
  • 批准号:
    188262446
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CAS: Reductive Functionalization of Carbon Dioxide with Light Olefins
CAS:二氧化碳与轻质烯烃的还原官能化
  • 批准号:
    2349537
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS: Functionalization of Earth-Abundant, Molecular Group 4 Photosensitizers for Photochemical Applications
CAS:用于光化学应用的地球丰富的 4 分子族光敏剂的功能化
  • 批准号:
    2349986
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Innovating Oxidative C–H Functionalization via Rhodium and Cobalt Catalysis
职业生涯:通过铑和钴催化创新氧化 C–H 功能化
  • 批准号:
    2340731
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Late-Stage Functionalization戦略に立脚した複雑天然物の自在な網羅的合成
基于后期功能化策略的复杂天然产物的灵活综合合成
  • 批准号:
    24H00591
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Ruthenium catalysed C-H functionalization for the construction of DNA-Encoded Libraries
钌催化的 C-H 功能化用于构建 DNA 编码文库
  • 批准号:
    EP/Z001404/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Early Metal Bimetallic Platforms for Controlled, Catalytic Dinitrogen Functionalization
用于受控催化二氮功能化的早期金属双金属平台
  • 批准号:
    2348646
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
  • 批准号:
    24K18002
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Enhancing Biosensor Surface Functionalization for new applications in Drug Development & Production
增强生物传感器表面功能化以实现药物开发的新应用
  • 批准号:
    10090247
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Photocatalytic Radical Polar Crossover for C-H, C-O, and C-C Functionalization
用于 C-H、C-O 和 C-C 官能化的光催化自由基极性交叉
  • 批准号:
    2349315
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Carboxyl-alkyl Functionalization for Sustainable Mixed Conduction Polymers: molecular design and mechanistic insights
可持续混合导电聚合物的羧基烷基官能化:分子设计和机理见解
  • 批准号:
    2408881
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了