First Low Field Magnetic Particle Imaging System for Neurological Applications in Humans

第一个用于人类神经学应用的低场磁粒子成像系统

基本信息

项目摘要

Magnetic Particle Imaging (MPI) is an imaging technique that allows the local distribution of magnetic nanoparticles to be determined. After rapid technological development, the method is currently undergoing preclinical trials, in which it has already shown a high potential in various medical applications. In particular, MPI has already achievedpioneering results in neurological questions such as craniocerebral trauma and stroke, as well as in the imaging of brain aneurysms. So far, however, the results could only be shown in small animal models because the MPI scanners developed so far are too small for measurements on large animals or humans.The goal of this project is the development of an MPI scanner for neurological questions, which is also suitable for human examination. Based on a prototype with which the feasibility has already been demonstrated, we will design a system that is optimally suited for monitoring tasks in the neurological intensive care unit. Due to its small sizeand optimized coils, it does not require a dedicated cooling and can therefore be mounted directly on the patient’s bed. The system can also be operated outside shielded rooms thanks to efficient signal routing and the detection of disturbances in the room. This enables permanent monitoring of the patient in the hours following stroke treatmentwithout exposure to X-rays. Up to now, CT images of these patients are only taken in cases of acute deterioration and at great expense.The existing prototype is implemented as a low-field MPI system and achieves a spatial resolution of up to 6mm in the horizontal direction and 28 mm in the vertical direction with a gradient strength of the selection field of approx. 0.2 T/m. Within the project, a two-dimensional excitation unit and a three-dimensional receiver unit will be designed which meets three essential requirements. They are highly efficient and do not require active cooling, they are electrically safe and can also be used in human experiments without hesitation and they are noise optimized so that the sensitivity of the existing prototype can be further increased. Due to the two-dimensional excitation and three-dimensional reception, the head scanner will achieve an isotropic resolution of approx. 5 mm. By optimizing the measurement sequence, the scanner will achieve a high temporal resolution of approx. 250 ms for a three-dimensional measurement volume with an edge length of 100 mm. For data reconstruction algorithms are developed, which consider imperfections of the magnetic fields. The developed MPI scanner and the reconstruction algorithms are tested on realistic flow phantoms, which simulate the vascular system of a human head.
磁性粒子成像(MPI)是一种成像技术,可以确定磁性纳米粒子的局部分布。经过快速的技术发展,该方法目前正在进行临床前试验,其中它已经在各种医疗应用中显示出很高的潜力。特别是,MPI已经在诸如颅脑创伤和中风等神经问题以及脑动脉瘤成像方面取得了开创性的成果。然而,到目前为止,这些结果只能在小动物模型中显示,因为迄今为止开发的MPI扫描仪太小,不适合对大型动物或人类进行测量。本项目的目标是开发一种用于神经问题的MPI扫描仪,它也适用于人体检查。基于已经证明可行性的原型,我们将设计一个最适合神经重症监护室监测任务的系统。由于其体积小和优化的线圈,它不需要专门的冷却,因此可以直接安装在病人的床上。由于有效的信号路由和对室内干扰的检测,该系统也可以在屏蔽室外运行。这使得在中风治疗后的几个小时内对患者进行永久监测,而不是暴露于X射线。迄今为止,这些患者的CT图像仅在急性恶化的情况下拍摄,且费用高昂。现有的原型是作为低场MPI系统实现的,水平方向的空间分辨率高达6 mm,垂直方向的空间分辨率高达28 mm,选择场的梯度强度约为。0.2 T/m。在该项目中,将设计一个二维激励单元和一个三维接收单元,满足三个基本要求。它们非常高效,不需要主动冷却,电气安全,也可以毫不犹豫地用于人体实验,并且经过噪声优化,可以进一步提高现有原型的灵敏度。由于二维激发和三维接收,头部扫描仪将实现约为200 °的各向同性分辨率。通过优化测量序列,扫描仪将实现约5 mm的高时间分辨率。对于边长为100 mm的三维测量体积,250 ms。对于数据重建算法,开发了考虑磁场缺陷的算法。所开发的MPI扫描仪和重建算法进行了测试,在现实的模拟人体头部的血管系统的脑电波幻影。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Matthias Gräser其他文献

Professor Dr.-Ing. Matthias Gräser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
  • 批准号:
    82271095
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
  • 批准号:
    82270883
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
  • 批准号:
    82270588
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54.7 万元
  • 项目类别:
    面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
  • 批准号:
    82002807
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
  • 批准号:
    82003061
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
  • 批准号:
    81873863
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

Towards widespread use of cardiac MRI using new affordable low magnetic field (0.55T) MRI scanner and AI
使用新型经济实惠的低磁场 (0.55T) MRI 扫描仪和 AI 实现心脏 MRI 的广泛使用
  • 批准号:
    2904562
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
V-LF-Spiro3D: Low-field 3D magnetic resonance spirometry for advanced regional exploration of respiratory diseases
V-LF-Spiro3D:低场 3D 磁共振肺量计,用于呼吸系统疾病的高级区域探索
  • 批准号:
    10063498
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Study of mitochondrial activation mechanism by ultra-low frequency magnetic field and development of minimally invasive therapy
超低频磁场线粒体激活机制研究及微创治疗进展
  • 批准号:
    23K06412
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extending the clinical reach of MRI scanning through innovative low-field engineering and hyperpolarised xenon technology
通过创新的低场工程和超极化氙气技术扩展 MRI 扫描的临床范围
  • 批准号:
    EP/X025187/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
  • 批准号:
    10739049
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Visualization of pair density waves in field-tolerant superconducting states with an ultra-low-temperature and in-plane high magnetic field STM
利用超低温面内高磁场 STM 实现耐场超导状态下的电子对密度波可视化
  • 批准号:
    23H01848
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A4IM_Affordable low-field MRI reference system
A4IM_经济实惠的低场 MRI 参考系统
  • 批准号:
    10070146
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Stretchable Coils for Low-Field, Portable MRI
用于低场便携式 MRI 的可拉伸线圈
  • 批准号:
    10724525
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Automatic coil design for low magnetic field leakage and high power transfer efficiency in wireless power transfer systems
自动线圈设计,可在无线功率传输系统中实现低磁场泄漏和高功率传输效率
  • 批准号:
    22KJ0953
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A4IM:Affordable low-field MRI reference system
A4IM:经济实惠的低场 MRI 参考系统
  • 批准号:
    10084156
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了