Data driven approach to fatigue crack growth modeling
疲劳裂纹扩展建模的数据驱动方法
基本信息
- 批准号:428299198
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fatigue is a key phenomenon in mechanics, and is responsible for most structural failures. However, the inherent complexity of the problem makes the development of predictive models a non-trivial task and it greatly complicates the identification of the material fatigue constitutive behavior starting from experimental results. Hence, despite the relevance of the problem, a widely accepted model with truly predictive capabilities is still lacking.Aim of the present project is to develop a data driven approach to fatigue crack growth modeling. The adoption of data driven techniques allows to directly embed into the solution of the problem a discrete set of data of experimental or numerical nature. This has the advantage of overcoming the necessity of calibrating analytical fatigue constitutive material relationships. A recent variational phase-field approach to fatigue crack growth proposed by the applicant will be adopted as a reference mechanical model. Then, taking advantage of machine learning and data mining techniques, a data driven procedure will be proposed based on the identification of the numerical constitutive behavior. To this end, a technique involving the interpolation of the material behavior data within sub-clusters of the material space with limited extension will be used. This approach allows to determine a set of combination coefficients that parameterize the numerical (fatigue) constitutive manifold of the material.The procedure will be first studied for a 1D problem and based on a numerically generated material data set. Then, it will be extended to 2-3D and to the employment of experimental data sets. The initial adoption of numerical data allows to precisely estimate the accuracy of the procedure since a reference solution is available, i.e. the results of the numerical simulations adopting available constitutive relationships. The capability of the method will be investigated by simulating standard tests used to characterize the fatigue behavior, such as the compact tension or three-point-bending tests. Here, loading and boundary conditions different that those used to train the numerical manifold detection phase will be adopted.
疲劳是力学中的一个重要现象,也是大多数结构失效的原因。然而,这一问题的内在复杂性使得建立预测模型成为一项艰巨的任务,这使得从实验结果开始识别材料疲劳本构行为变得非常复杂。因此,尽管这一问题具有相关性,但真正具有预测能力的被广泛接受的模型仍然缺乏。本项目的目的是开发一种数据驱动的疲劳裂纹扩展建模方法。通过采用数据驱动技术,可以在问题的解中直接嵌入一组离散的实验或数值数据。这具有克服了校准分析疲劳本构材料关系的必要性的优点。申请人最近提出的疲劳裂纹扩展的变分相场方法将被用作参考力学模型。然后,利用机器学习和数据挖掘技术,提出了一种基于数值本构行为识别的数据驱动方法。为此,将使用涉及在具有有限扩展的材质空间的子群集中内插材质行为数据的技术。这种方法允许确定一组组合系数,这些组合系数对材料的数值(疲劳)本构流形进行参数化。将首先研究基于数值生成的材料数据集的一维问题的过程。然后,将其扩展到2-3D和使用实验数据集。最初采用数值数据可以精确地估计程序的精度,因为有一个参考解,即采用可用的本构关系的数值模拟结果。该方法的能力将通过模拟用于表征疲劳行为的标准试验来进行,例如紧凑拉伸或三点弯曲试验。这里,将采用不同于用于训练数值流形检测阶段的加载和边界条件。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-driven fracture mechanics
- DOI:10.1016/j.cma.2020.113390
- 发表时间:2020-12-01
- 期刊:
- 影响因子:7.2
- 作者:Carrara, P.;De Lorenzis, L.;Ortiz, M.
- 通讯作者:Ortiz, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr.-Ing. Pietro Carrara, Ph.D.其他文献
Dr.-Ing. Pietro Carrara, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23K25946 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new data-driven approach to bring humanity into virtual worlds with computer vision
一种新的数据驱动方法,通过计算机视觉将人类带入虚拟世界
- 批准号:
23K28129 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23H01250 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
- 批准号:
2896325 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Study on Heavy Rainfall Mechanism by Mathematical and Data-Driven Approach Using Large Ensemble
利用大集合的数学和数据驱动方法研究强降雨机制
- 批准号:
23KF0161 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Enabling the mortgage industry to drive net zero retrofitting through a data-driven portfolio approach
使抵押贷款行业能够通过数据驱动的投资组合方法推动净零改造
- 批准号:
10092176 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
- 批准号:
10619319 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Data-driven approach for advanced control of immune system by using low-temperature plasma
利用低温等离子体对免疫系统进行高级控制的数据驱动方法
- 批准号:
23H01404 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: A Holistic Developer-Centered Approach to Enhance Privacy for Data-Driven Applications
职业:以开发人员为中心的整体方法来增强数据驱动应用程序的隐私
- 批准号:
2238047 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant