The Arithmetic Fundamental Lemma for the Drinfeld space
德林菲尔德空间的算术基本引理
基本信息
- 批准号:428982207
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The arithmetic fundamental lemma conjectures (AFL conjectures) are a family of conjectures in the area of arithmetic geometry, i.e. at the intersection of algebraic geometry and number theory. They describe certain identities of intersection numbers on moduli spaces of p-divisible groups and orbital integrals on p-adic Lie groups. In particular, the AFL conjectures are formulated over a p-adic local field. They form the local building blocks of deep global assertions that concern the relations of cycles on Shimura varieties and automorphic representations. In this way, they take a role which is analogous to Langland's Fundamental Lemma (proven by Ngô in 2009).The first example of an AFL conjecture was found by Wei Zhang in 2011. He also proved the conjecture in low dimension. Various variants of the conjecture have been formulated and partially proven since then, both in local and global situations and over function fields. These approaches introduced new methods to arithmetic geometry and, hence, contributed to this area of mathematics in general.In this project, I would like to introduce and study a new variant of the AFL conjecture for the Drinfeld space. An interesting aspect of this variant is that degenerate intersections occur already in low dimension. Another aspect is that Scholze-Weinstein gave a simple description of the Drinfeld space at infinite level. Presumably, this can be used to approximately express the intersection numbers in question. With both aspects, the project contributes to a better understanding of the intersection theoretic side of the AFL conjectures.The working groups of Wei Zhang and Zhiwei Yun at MIT provide an ideal environment for the realization of this project. I am also looking forward to getting to know the inspiring scientific atmosphere of Boston.
算术基本引理是算术几何领域中的一类引理,即代数几何和数论的交叉点。它们描述了p-可分群的模空间上的交数和p-进李群上的轨道积分的某些恒等式。特别是,AFL的结构制定了一个p-adic局部领域。它们构成了深层全局断言的局部构建块,这些断言涉及志村簇和自守表示上的循环关系。在这种情况下,它们的作用类似于Langland的基本引理(由Ngô在2009年证明)。AFL猜想的第一个例子是由张伟在2011年发现的。他还证明了低维猜想。从那时起,在局部和全局情况下以及在函数域中,猜想的各种变体已经被制定并部分证明。这些方法介绍了新的方法算术几何,因此,有助于这一领域的数学一般。在这个项目中,我想介绍和研究一个新的变种的AFL猜想的德林费尔德空间。这个变体的一个有趣的方面是退化相交已经在低维中发生。另一方面,Scholze-Weinstein对无限水平的Drinfeld空间作了简单的描述。假设,这可以用来近似地表示所讨论的交叉数。通过这两个方面,该项目有助于更好地理解AFL架构的交集理论方面。麻省理工学院的张伟和云志伟的工作组为该项目的实现提供了理想的环境。我也期待着了解波士顿鼓舞人心的科学氛围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Andreas Mihatsch其他文献
Dr. Andreas Mihatsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
- 批准号:
2426728 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Renewal: Fundamental Physics of Polariton Condensates
更新:极化子凝聚体的基础物理
- 批准号:
2306977 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Hawking - How massive are debris discs? Weighing a fundamental component of planetary systems
霍金 - 碎片盘有多大?
- 批准号:
EP/Y000218/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CAS: Cu, Fe, and Ni Pincer Complexes: A Platform for Fundamental Mechanistic Investigations and Reaction Discovery
CAS:Cu、Fe 和 Ni 钳配合物:基础机理研究和反应发现的平台
- 批准号:
2349827 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Understanding Collisionless Magnetic Reconnection as a Fundamental Heliospheric Process
职业:理解无碰撞磁重联作为基本的日光层过程
- 批准号:
2338131 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
- 批准号:
2338485 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Can we heal people using electricity? Developing fundamental understanding and bioelectronic devices to exploit bioelectricity in bioengineering.
我们可以用电来治愈人们吗?
- 批准号:
MR/X032159/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Versatile Synthesis of Chlorophylls and Bacteriochlorophylls for Fundamental Studies in Photosynthesis
用于光合作用基础研究的叶绿素和细菌叶绿素的多功能合成
- 批准号:
2348052 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant