Asymptotic limits of SCFTs and their relation to corresponding geometric structures, combining techniques from SCFT, noncommutative geometry, and algebraic geometry

SCFT 的渐近极限及其与相应几何结构的关系,结合 SCFT、非交换几何和代数几何的技术

基本信息

  • 批准号:
    42963613
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2007
  • 资助国家:
    德国
  • 起止时间:
    2006-12-31 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

The project aims to extend the previously developed notion of limiting processes for conformal field theories to the supersymmetric setting. It is expected that by means of techniques from noncommutative geometry in the resulting degenerate superconformal field theories, geometric interpretations can be obtained which include a metric, a dilaton, and a complex structure along with appropriate Dirac operators. The resulting degenerate geometries shall be compared and preferably identified with those Gromov-Hausdorff type limits that play a vital role in the context of mirror symmetry e.g. in the work of Siebert and collaborators, which is already funded under the umbrella of the SPP 1154. The project also includes applications to an important class of examples which is expected to yield interesting insights in singularity theory. Altogether a complete geometric understanding for the entire structure that arises in limits of SCFTs is aimed for.
该项目的目的是扩展以前开发的概念限制过程的共形场理论的超对称设置。预计通过非对易几何的技术,在由此产生的退化超共形场论,几何解释可以得到,其中包括一个度量,一个量子,和一个复杂的结构沿着适当的狄拉克运营商。将所得的简并几何形状与Gromov-Hausdorff类型极限进行比较,并最好与Gromov-Hausdorff类型极限进行识别,这些极限在镜像对称性的背景下发挥着至关重要的作用,例如在Siebert和合作者的工作中,该工作已经在SPP的保护下得到资助1154。该项目还包括应用一类重要的例子,预计将产生有趣的见解奇异理论。总之,一个完整的几何理解的整个结构中出现的限制SCFT的目的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Katrin Wendland其他文献

Professorin Dr. Katrin Wendland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
  • 批准号:
    EP/Y020839/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
  • 批准号:
    DE240100664
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
  • 批准号:
    2340481
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
  • 批准号:
    EP/Z000394/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
  • 批准号:
    EP/Z532836/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了