Electrodialytic Desalination at High Currents - On the Interplay of Electroconvection, Water Dissociation and Channel Geometry
高电流下的电渗析脱盐 - 电对流、水离解和通道几何形状的相互作用
基本信息
- 批准号:430046158
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electroconvective vortices emerging in an electrodialysis cell increase the mass transfer significantly, since they convectively supply ion-rich solution to the membrane surface through the boundary layer where depletion takes place. Today, it is unclear if this beneficial effect also appears in spacer-filled channels subject to cross flow. Despite the importance of these vortices, the nature of their formation and their development is under extensive discussion. Additionally, water dissociation, which is the second crucial phenomenon for the potential current increase at high current densities, was omitted in most modeling approaches of electroconvection. At high driving forces water dissociates into H+ and OH- ions that also contribute to the current and interact with electroconvection. This process is not desired in most applications, because it lowers the flux of the ions of interest. Moreover, little is known about the influence of spacers on electroconvection. The question whether the spacers placed into a channel benefit vortices formation was not answered yet. The proposal aims to investigate the behavior of electroconvective vortices formed during electrodialysis at high current densities with a particular focus on the role of spacers placed in the channel.This unique research approach combines numerical and experimental methods with complementary competencies of the Russian and Germany research teams. The project will deliver deep insight into the interplay of electroconvection, convection induced by spacers and water dissociation at high current densities. The knowledge gained will potentially broaden the scope of electrodialytic desalination towards high current densities - a scope currently avoided due to incomplete comprehension of the phenomena involved.
出现在电渗析池中的电对流涡流显著增加了传质,因为它们通过发生耗尽的边界层对流地将富含离子的溶液供应到膜表面。今天,尚不清楚这种有益的效果是否也出现在受到交叉流的间隔填充通道中。尽管这些漩涡的重要性,其形成和发展的性质是在广泛的讨论。此外,水解离,这是第二个关键现象的潜在电流增加在高电流密度,被忽略在大多数模拟方法的电对流。在高驱动力下,水解离成H+和OH-离子,这些离子也有助于电流并与电对流相互作用。该过程在大多数应用中是不期望的,因为它降低了感兴趣的离子的通量。此外,很少有人知道的电对流的影响的间隔。通道中放置间隔物是否有利于涡流的形成,这一问题尚未得到解答。该提案旨在研究在高电流密度下电渗析过程中形成的电对流涡流的行为,特别关注放置在通道中的间隔物的作用。这种独特的研究方法将数值和实验方法与俄罗斯和德国研究团队的互补能力相结合。该项目将深入了解电对流,由间隔物引起的对流和高电流密度下的水解离的相互作用。所获得的知识将有可能扩大电渗析脱盐的范围向高电流密度-目前避免的范围,由于所涉及的现象的不完全理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Matthias Wessling其他文献
Professor Dr.-Ing. Matthias Wessling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Matthias Wessling', 18)}}的其他基金
Ellipsopermeation - On the interplay of swelling and permeation of polymers with intrisicmicroporosity
椭圆渗透 - 具有固有微孔性的聚合物溶胀和渗透的相互作用
- 批准号:
397270430 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Low temperature membrane gas separation for nitrogen removal and helium recovery from natural gas
天然气脱氮、回收氦气的低温膜气体分离
- 批准号:
258012131 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Inorganic porous hollow fibers for intensified fractionation and filtration
用于强化分级和过滤的无机多孔中空纤维
- 批准号:
225799829 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Comprehensive Design of a Gas/Liquid/SolidMembrane-based Polymerisation Reactor
气/液/固膜聚合反应器的综合设计
- 批准号:
504129678 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Unravelling transport and deposition mechanisms of virus-like colloids during depth filtration
揭示深层过滤过程中病毒样胶体的运输和沉积机制
- 批准号:
455822746 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Multi-energy driven photothermal evaporators for all-weather desalination
用于全天候海水淡化的多能源驱动光热蒸发器
- 批准号:
DP240101581 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Materials that unlock light-controlled specific separations to enable sustainable desalination (LUCENT)
解锁光控特定分离以实现可持续海水淡化的材料(LUCENT)
- 批准号:
EP/X042286/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Monitoring Desalination Membrane Fouling using Sodium Magnetic Resonance
使用钠磁共振监测海水淡化膜污垢
- 批准号:
DP230100248 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Non-Isothermal Donnan-Dialysis: a novel method beyond iso-thermal Water pre-Treatment paradigm for Energy Reduction in desalination
非等温唐南透析:一种超越等温水预处理范式的新方法,用于减少海水淡化中的能源消耗
- 批准号:
EP/Y014944/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Harnessing buoyancy-driven instabilities for enhanced membrane desalination
利用浮力驱动的不稳定性来增强膜海水淡化
- 批准号:
2306329 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Spacer production scale-up via proprietary 3D-additive manufacturing for industrial desalination
通过用于工业海水淡化的专有 3D 增材制造扩大垫片生产规模
- 批准号:
10074349 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Launchpad
I-Corps: Vacuum Distillation and Desalination for Wastewater Treatment
I-Corps:用于废水处理的真空蒸馏和海水淡化
- 批准号:
2227054 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Novel Effluent Desalination Processes: Sustainable Water Recovery and Energy Generation in Mining Sites
新型污水淡化工艺:矿场可持续水回收和能源生产
- 批准号:
RGPIN-2020-04262 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
PFI-TT: Solar Evaporator-Based High-Efficiency Water Desalination System
PFI-TT:基于太阳能蒸发器的高效海水淡化系统
- 批准号:
2141035 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Advanced Materials and Emerging Technologies for Water Recycling, Reuse and Desalination
用于水回收、再利用和海水淡化的先进材料和新兴技术
- 批准号:
RGPIN-2019-07000 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual