Statistical Methods of Meta-Analysis for Count Data with Rare Events

罕见事件计数数据荟萃分析的统计方法

基本信息

项目摘要

Typical effect measures in meta-analysis of count data are the risk ratio, the odds ratio and risk difference. Meta-analysis of effect measures of count data proceeds as follows. The effect measure is calculated for each component study (partly on the log-scale) accompanied by an estimate of the associated variance. It is then assumed that an approximate normality holds and the tools of meta-analysis are then applied as if these where actually arising from a normal distribution. This approach may be justifiable if both sizes, sample and event sizes, of the component studies are large. However, this becomes evidently flawed in the case of rare events, in the extreme case of no events at all, where some effect measures become undefined and all variance estimates undefined or meaningless. Introduction of smoothing constants will help to avoid undefined estimates but introduce bias instead. Hence, the main theme of the project is to use approaches that are appropriate for the count character of the data and where rare events including zero events are causing not only no problem but are an integral part of the event scale. The model classes considered are the mixed Poisson (for the risk ratio and risk difference) and the mixed logistic regression (for the odds ratio). Here, the study effect is treated as a normally distributed random effect, which is mixed with the appropriate count distribution, the Poisson (for the risk ratio and risk difference) and binomial (for the odds ratio). For the risk ratio and risk difference a particular interesting approach is considered. Using the fact that the conditional distribution of the counts in the experimental group, conditional on the margin of the events, is a binomial distribution, only the parameter of interest are contained as the baseline (control group) parameter get eliminated. Hence, inference can focus on the parameter of interest alone. In these models, the heterogeneity variance, which is the major parameter of interest, is provided as variance of the random effects distribution. This approach will be compared with conventional approaches such as DerSimonian-Laird, REML among others. As an alternative to the conventional chi-square heterogeneity test, a likelihood ratio test is investigated which tests the null hypothesis of homogeneity by setting the variance of the random effects distribution to zero. The mixed Poisson and logistic regression approach will be further generalized to allow inclusion of covariates on study level. In addition, the problem of missing values in one of the groups under comparison will be approached in the mixed effects modelling. Detailed simulation work will investigate and compare the various approaches and, finally, R-packages will be provided which contain the proposed methodology.
计数数据荟萃分析中典型的效应度量是风险比、优势比和风险差。对计数数据的效应测度进行meta分析。对每个组成部分的研究(部分在对数尺度上)计算效果度量,并对相关方差进行估计。然后假设近似正态分布成立,然后应用元分析工具,就好像这些实际上是由正态分布产生的一样。如果组成部分研究的样本和事件规模都很大,这种方法可能是合理的。然而,在罕见事件的情况下,在根本没有事件的极端情况下,一些效果度量变得不确定,所有方差估计都不确定或无意义,这就变得明显存在缺陷。引入平滑常数将有助于避免未定义的估计,但会引入偏差。因此,该项目的主题是使用适合数据计数特征的方法,其中包括零事件在内的罕见事件不仅不会造成问题,而且是事件规模的组成部分。考虑的模型类别是混合泊松(用于风险比和风险差)和混合逻辑回归(用于优势比)。在这里,研究效应被视为一种正态分布的随机效应,混合了适当的计数分布、泊松分布(风险比和风险差)和二项分布(优势比)。对于风险比和风险差,考虑了一种特别有趣的方法。利用实验组中计数的条件分布是二项分布的事实,在事件的边缘条件下,只包含感兴趣的参数作为基线(对照组)参数被消除。因此,推理可以只关注感兴趣的参数。在这些模型中,异质性方差作为随机效应分布的方差,是我们感兴趣的主要参数。该方法将与传统方法(如dersimonan - laird、REML等)进行比较。作为传统卡方异质性检验的替代方法,研究了似然比检验,该检验通过将随机效应分布的方差设置为零来检验齐性的零假设。混合泊松和逻辑回归方法将进一步推广,以允许在研究水平上包含协变量。此外,在混合效应建模中,将探讨比较组中某一组的缺失值问题。详细的模拟工作将调查和比较各种方法,最后,将提供包含所建议方法的r包。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Heinz Holling其他文献

Professor Dr. Heinz Holling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Heinz Holling', 18)}}的其他基金

Measuring Divergent Thinking in Youth and the impact of culture
衡量年轻人的发散思维和文化的影响
  • 批准号:
    246486438
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Meta-analysis of the validity of binary diagnoses based on dichotomized cirteria
基于二分标准的二元诊断有效性的荟萃分析
  • 批准号:
    58856953
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optimal design for online generated intelligence tests
在线生成智力测试的优化设计
  • 批准号:
    52261310
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Rule-based Item Generation of Algebra Word Problems Based upon Linear Logistic Test Models für Item Cloning and Optimal Design
基于用于项目克隆和优化设计的线性 Logistic 测试模型的代数应用题的基于规则的项目生成
  • 批准号:
    43742131
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Effiziente Versuchsplanung in der Conjoint Analyse
联合分析中的高效实验规划
  • 批准号:
    5208770
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
  • 批准号:
    10405472
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Developments of statistical inference, prediction, and modeling methods for network meta-analysis
网络元分析统计推断、预测和建模方法的发展
  • 批准号:
    19H04074
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
  • 批准号:
    10015333
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
  • 批准号:
    9815902
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
  • 批准号:
    10171909
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
  • 批准号:
    9108437
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Statistical Methods for Longitudinal Data and Meta-Analysis
纵向数据的统计方法和荟萃分析
  • 批准号:
    MR/L501566/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Development of statistical methods for meta-analysis of tuberculosis diagnostic studies
结核病诊断研究荟萃分析统计方法的开发
  • 批准号:
    224419
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Statistical Methods and Software for Meta-analysis of Diagnostic Tests
诊断测试荟萃分析的统计方法和软件
  • 批准号:
    8267547
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Statistical Methods and Software for Meta-analysis of Diagnostic Tests
诊断测试荟萃分析的统计方法和软件
  • 批准号:
    8164771
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了