Statistical Methods and Software for Multivariate Meta-analysis

多元荟萃分析的统计方法和软件

基本信息

  • 批准号:
    10405472
  • 负责人:
  • 金额:
    $ 32.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-10 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Statistical Methods and Software for Multivariate Meta-analysis Principal Investigator: Haitao Chu, M.D., Ph.D. Summary Comparative effectiveness research (CER) aims to inform health care decisions concerning the benefits and risks of different prevention strategies, diagnostic instruments and treatment options. A meta-analysis (MA) is a statistical method that combines results of multiple independent studies to improve statistical power and to reduce certain biases within individual studies. MA also has the capacity to contrast results from different studies and identify patterns and sources of disagreement among those results. While many statistical methods for MA have been proposed and investigated, important research gaps remain. The increasing number of prevention strategies, assessment instruments and treatment options for a given disease condition, as well as the rapid escalation in costs, have generated a need to simultaneously compare multiple options in clinical practice using innovative and rigorous multivariate MA methods. Following the NIH strategic plan for data science and the National Library of Medicine priority area on “integration of heterogeneous data types”, in response to PA-18-484, this proposal's overall goal is to develop cutting-edge statistical methods to enhance the reproducibility, efficiency and generalizability of MA, as well as to develop easy-to-use software. Specifically, in this proposal, we will: (1) examine the performance of skewness of the standardized deviates for quantifying publication bias in univariate MA, and develop methods quantifying publication bias in multivariate MA; (2) develop a Bayesian hierarchical summary receiver operating characteristic (HSROC) network meta-analysis framework for simultaneously comparing multiple diagnostic tests; (3) develop a causal inference framework accounting for post-randomization variables in multivariate MA; and (4) develop open-source, cross-platform, publicly available and easy-to-use software (including R packages and SAS macros) to implement the proposed MA methods. We will evaluate the strengths and weaknesses of these proposed methods versus existing MA methods using many real case studies and extensive simulation studies. The proposed statistical methods will be broadly applicable to meta-analysis. Completing these four aims will directly benefit the CER evidence base by providing state-of-the-art methods implemented in user-friendly software including R packages and SAS macros, which will be made freely available to the public. It will improve public health by facilitating prevention, diagnosis, and treatment of cancers and cardiovascular, infectious, and other diseases.
多元荟萃分析的统计方法和软件 首席研究员:褚海涛,医学博士、博士 概括 比较有效性研究 (CER) 旨在为有关益处和益处的医疗保健决策提供信息 不同预防策略、诊断仪器和治疗方案的风险。荟萃分析(MA)是 结合多项独立研究结果的统计方法,以提高统计功效并 减少个别研究中的某些偏见。 MA 还能够对比不同研究的结果 并确定这些结果之间不一致的模式和来源。虽然 MA 的统计方法有很多 虽然已经提出并进行了研究,但仍然存在重要的研究空白。预防数量不断增加 针对特定疾病状况的策略、评估工具和治疗方案,以及快速 成本的上升,需要在临床实践中同时比较多种选择 创新且严格的多元 MA 方法。 遵循 NIH 数据科学战略计划和国家医学图书馆优先领域 “异构数据类型的集成”,响应 PA-18-484,该提案的总体目标是开发 尖端统计方法,以提高 MA 的可重复性、效率和普遍性,以及 开发易于使用的软件。具体来说,在这个提案中,我们将:(1)检查偏度的表现 用于量化单变量 MA 中发表偏倚的标准化偏差,并开发量化方法 多元 MA 中的发表偏倚; (2) 开发贝叶斯分层汇总接收器操作 特征(HSROC)网络荟萃分析框架,用于同时比较多个诊断 测试; (3) 开发一个因果推理框架来解释多元 MA 中的随机化后变量; (4) 开发开源、跨平台、公开且易于使用的软件(包括R包) 和 SAS 宏)来实施所提出的 MA 方法。 我们将评估这些提出的方法与现有 MA 方法的优缺点 使用许多真实案例研究和广泛的模拟研究。拟议的统计方法将广泛 适用于荟萃分析。完成这四个目标将直接有利于 CER 证据库,因为提供 在用户友好的软件中实现的最先进的方法,包括 R 包和 SAS 宏, 将免费向公众开放。它将通过促进预防、诊断和治疗来改善公共卫生 治疗癌症以及心血管、传染病和其他疾病。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Double-zero-event studies matter: a re-evaluation of physical distancing, face masks, and eye protection for preventing person-to-person transmission of COVID-19 and its policy impact.
双零事件研究很重要:重新评估物理距离、口罩和眼睛保护措施,以防止 COVID-19 人际传播及其政策影响。
A variance shrinkage method improves arm-based Bayesian network meta-analysis.
一种差异方法改善了基于ARM的贝叶斯网络荟萃分析。
An improved Bayesian approach to estimating the reference interval from a meta-analysis: Directly monitoring the marginal quantiles and characterizing their uncertainty.
一种改进的贝叶斯方法,用于根据荟萃分析估计参考区间:直接监测边缘分位数并表征其不确定性。
  • DOI:
    10.1002/jrsm.1624
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Siegel,Lianne;Chu,Haitao
  • 通讯作者:
    Chu,Haitao
RIMeta: An R shiny tool for estimating the reference interval from a meta-analysis.
RIMeta:一个 R 闪亮工具,用于估计荟萃分析的参考区间。
  • DOI:
    10.1002/jrsm.1626
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Jiang,Ziren;Cao,Wenhao;Chu,Haitao;Bazerbachi,Fateh;Siegel,Lianne
  • 通讯作者:
    Siegel,Lianne
A penalization approach to random-effects meta-analysis.
  • DOI:
    10.1002/sim.9261
  • 发表时间:
    2022-02-10
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Wang Y;Lin L;Thompson CG;Chu H
  • 通讯作者:
    Chu H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lifeng Lin其他文献

Lifeng Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lifeng Lin', 18)}}的其他基金

Joint modeling of continuous and binary data in meta-analysis
荟萃分析中连续数据和二进制数据的联合建模
  • 批准号:
    10350742
  • 财政年份:
    2021
  • 资助金额:
    $ 32.5万
  • 项目类别:
Joint modeling of continuous and binary data in meta-analysis
荟萃分析中连续数据和二进制数据的联合建模
  • 批准号:
    10535479
  • 财政年份:
    2021
  • 资助金额:
    $ 32.5万
  • 项目类别:
Joint modeling of continuous and binary data in meta-analysis
荟萃分析中连续数据和二进制数据的联合建模
  • 批准号:
    10793351
  • 财政年份:
    2021
  • 资助金额:
    $ 32.5万
  • 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
  • 批准号:
    10171909
  • 财政年份:
    2019
  • 资助金额:
    $ 32.5万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了