Analytical and numerical studies of nonlinear problems of a low density gas

低密度气体非线性问题的分析和数值研究

基本信息

  • 批准号:
    03452098
  • 负责人:
  • 金额:
    $ 4.48万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1993
  • 项目状态:
    已结题

项目摘要

The result of this project is summarized as follows.A.Flows accompanying evaporation and condesationLong-standing problems, evaporating flows from a cylindrical or spherical condensed phase into a vacuum or into a space occupied with its vapor, are analyzed on the basis of the kinetic theory, and the comprehensive feature of the flows, especially the decisive difference between the flow from a cylinder and that from the sphere, are clarified. The drag problem of a volatile particle is also studied.B.Flows around a bodyVarious difficulties in carrying out numerical analysis of flows around a body, i.e., discontinuity of the velocity distribution function in a gas, the complicated collision integral, and infinite domain problems, are resolved. With aid of the result, various important flows around bodies are analyzed accurately for the whole range of the Knudsen number.C.Flows induced by temperature fieldsThe thermophoresis problem for a spherical particle is analyzed accurately on the basis of the standard Boltzmann equation for the whole range of the Knudsen number, and its comprehensive feature are clarified. The thermal creep flow, which plays an important role in the thermophoresis, is examined experimentally, and fundamental theoretical results are confirmed.D.Shock wavesThe structure of plane shock waves is analyzed accurately on the basis of the standard Boltzmann equation for hard-sphere molecules. Shock waves that appears in expanding flows are also analyzed.E.Fundamental properties of solutions of Boltzmann equationVarious important properties in analyzing and understanding rarefied gas flows, i.e., existence of discontinuity of the velocity distribution function in a gas around a convex body and its relation with the S layr at the bottom of Knudsen layr, mathematical properties of steady solutions of a highly rarefied gas, nonlinear effects in a nearly uniform equilibrium flow and thier examples, are clarified.
本课题的研究成果概括如下:(1)伴随着蒸发和凝结的流动本文从动力学理论出发,分析了长期存在的问题,即从圆柱形或球形凝结相到真空或其蒸汽所占空间的蒸发流动,阐明了流动的综合特征,特别是圆柱形流动与球形流动的决定性区别。B.绕体流动进行绕体流动数值分析的各种困难,即,解决了气体中速度分布函数的不连续性、复杂的碰撞积分和无限域问题。C.温度场诱导的流动从标准Boltzmann方程出发,对球形颗粒的热泳问题进行了全Knudsen数范围的精确分析,阐明了其综合特征。对在热泳中起重要作用的热蠕变流进行了实验研究,并证实了基本的理论结果。D.激波根据硬球分子的标准Boltzmann方程,精确地分析了平面激波的结构。E. Boltzmann方程解的基本性质分析和理解稀薄气体流动中的各种重要性质,即,本文阐明了凸体周围气体速度分布函数间断的存在性及其与Knudsen层底部S层的关系、高稀薄气体定常解的数学性质、近均匀平衡流中的非线性效应及其实例。

项目成果

期刊论文数量(108)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
高田 滋: "希薄気体中の球状粒子に働く抗力と熱応力-全希薄度に対する数値解析-" 真空. 35. 143-146 (1992)
Shigeru Takada:“作用于稀气体中球形颗粒的阻力和热应力 - 总稀释的数值分析”真空。 35. 143-146 (1992)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroshi Sugimoto: "Kinetic theory analysis of steady evaporating flows from a spherical condensed phase into a vacuum" Journal of the Vacuum Society of Japan. Vol.36. 148-151 (1993)
Hiroshi Sugimoto:“从球形凝聚相到真空的稳定蒸发流的动力学理论分析”日本真空学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shigeru Takata: "Thermophoresis of a sphere with a uniform temperature : Numerical analysis of the Boltzmann equation for hard-sphere molecules" Rarefied Gas Dynamics. (in press). (1994)
Shigeru Takata:“具有均匀温度的球体的热泳:硬球分子玻尔兹曼方程的数值分析”稀有气体动力学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuo Aoki: "Numerical analysis of steady flows of a gas condensing on or evaporating from its plane condensed phase on the basis of kinetic theory:Effect of gas motion along the condensed phase" physics of Fluids A. 3. 2260-2275 (1991)
Kazuo Aoki:“基于动力学理论对在平面凝聚相上凝结或从其平面凝聚相蒸发的气体的稳定流动进行数值分析:沿着凝聚相的气体运动的影响”流体物理 A. 3. 2260-2275 (1991)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
高田 滋: "希薄気体中の球状粒子に働く抗力と熱応力ー全希薄度に対する数値解析ー" 真空. 35. (1992)
Shigeru Takada:“作用于稀气体中球形颗粒的阻力和热应力 - 总稀释的数值分析”35。(1992)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SONE Yoshio其他文献

SONE Yoshio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SONE Yoshio', 18)}}的其他基金

Studies on nonequilibrium phenomena in gas flows-New approach by hybrid micro-macro gasdynamics-
气流非平衡现象研究-混合微宏观气体动力学新方法-
  • 批准号:
    10044151
  • 财政年份:
    1998
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Development of a vacuum pump without a moving part with the aid of thermal transpiration flow of a rarefied gas
借助稀薄气体的热蒸腾流开发无运动部件的真空泵
  • 批准号:
    09555064
  • 财政年份:
    1997
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on the stability of low pressure gases on the basis of kinetic theory
基于动力学理论的低压气体稳定性研究
  • 批准号:
    08455463
  • 财政年份:
    1996
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on forces on and energy transfer to bodies in a rarefied gas
稀薄气体中物体上的力和能量传递的研究
  • 批准号:
    63460070
  • 财政年份:
    1988
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

RUI: Development of Fast Methods for Solving the Boltzmann Equation through Reduced Order Models, Machine Learning, and Optimal Transport
RUI:开发通过降阶模型、机器学习和最优传输求解玻尔兹曼方程的快速方法
  • 批准号:
    2111612
  • 财政年份:
    2021
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Standard Grant
CAREER: Hilberts Sixth Problem in the Boltzmann equation
职业生涯:玻尔兹曼方程中的希尔伯特第六个问题
  • 批准号:
    2047681
  • 财政年份:
    2021
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Continuing Grant
Electron heating in capacitive RF plasmas based on moments of the Boltzmann equation: From fundamental understanding to predictive control
基于玻尔兹曼方程矩的电容式射频等离子体中的电子加热:从基本理解到预测控制
  • 批准号:
    428942393
  • 财政年份:
    2019
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Research Grants
CDS&E: DEterministic Evaluation of Kinetic Boltzmann equation with Spectral H/p/v Accuracy (DEEKSHA)
CDS
  • 批准号:
    1854829
  • 财政年份:
    2019
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Standard Grant
Nonlinear microlocal analysis for the Boltzmann equation
玻尔兹曼方程的非线性微局域分析
  • 批准号:
    17K05318
  • 财政年份:
    2017
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Development of Fast Scalable Adaptive High Order Methods for Solving the Boltzmann Equation
RUI:开发用于求解玻尔兹曼方程的快速可扩展自适应高阶方法
  • 批准号:
    1620497
  • 财政年份:
    2016
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Standard Grant
Singularity Analysis of Solutions to the Boltzmann Equation near the Boundary
玻尔兹曼方程边界附近解的奇异性分析
  • 批准号:
    15K17572
  • 财政年份:
    2015
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of multi-dimensional supernova explosions by 6D Boltzmann equation
利用6D玻尔兹曼方程研究多维超新星爆炸
  • 批准号:
    15K05093
  • 财政年份:
    2015
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Highly efficient numerical solution of the Boltzmann equation for practical applications
玻尔兹曼方程的实际应用的高效数值求解
  • 批准号:
    1438530
  • 财政年份:
    2014
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Standard Grant
Maximum Entropy Closure of Boltzmann-Equation Moment-Hierarchy
玻尔兹曼方程矩层次的最大熵闭合
  • 批准号:
    1418903
  • 财政年份:
    2014
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了