A Study on decision-support system of clinical laboratory tests.

临床检验决策支持系统研究。

基本信息

  • 批准号:
    05454601
  • 负责人:
  • 金额:
    $ 3.78万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 1995
  • 项目状态:
    已结题

项目摘要

A study on decision-support system for liver disease using clinical laboratory tests was performed. The system was composed of two steps. One is a step to use an artificial neural network and the other is a step to use medical rule base, In the former, a back propagation neural network was designed to diagnose seven categories of chronic liver diseases : chronic inactive hepatitis, chronic active hepatitis, liver cirrhosis, hepatocellular carcinoma, fatty liver, alcoholic liver desease, and normal. The output of a neural network were input to the second step for a final diagnosis. Input data to the network were 26 items of hepatic laboratory data from 187 cases. The diagnostic accuracy of the system was 75.4% (141 of 187 cases) which was higher than the diagnostic sccuracy (63.0%) of 5 hapatologists. Yhis system was seemed to be effective as a decision-support system for chronic liver disease. When Fuzzy theory was used to diagnose liver disease, high sensitivity was obtained with low specificity.Next, we tried categorization of ten disease groups of inflammatory disease, muscular or myocardial disease, anemia, malignant tumor, reno-urinary disease, hepatobiliary disease, diabetes mellitus, gastrointestinal disease, bone disease and hyperlipidemia from 30 sets of leboratory data using artificial neural network and dicision-tree logic. Ten-disease groups were automatically classified with 80.8% of diagnostic accuracy.This system will be helpful to infer the disease groups from basic laboratory data. In conclusion, neural network in very powerful to differentiate groups which shows overlapped limits of parameters.
对临床实验室检测肝病决策支持系统进行了研究。该系统由两个步骤组成。第一步是利用人工神经网络,第二步是利用医学规则库。在前者中,设计了一个反向传播神经网络来诊断七类慢性肝病:慢性非活动性肝炎、慢性活动性肝炎、肝硬变、肝细胞癌、脂肪肝、酒精性肝病和正常。将神经网络的输出输入到第二步进行最终诊断。网络录入的数据为187例26项肝脏实验室数据。该系统的诊断正确率为75.4%(141/187),高于5位血液科医生的诊断正确率(63.0%)。该系统作为慢性肝病的决策支持系统似乎是有效的。然后利用人工神经网络和决策树逻辑,从30组诊断数据中尝试对炎症性疾病、肌肉或心肌疾病、贫血、恶性肿瘤、肾泌尿系统疾病、肝胆疾病、糖尿病、胃肠道疾病、骨病、高脂血症等10个病种进行分类。对10个疾病组进行了自动分类,诊断准确率为80.8%。该系统将有助于从基础实验室数据推断疾病组。综上所述,神经网络在区分参数范围重叠的群体方面具有很强的能力。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MITSURU IKEDA: "Estimation of the Size of the Media Necessary to Construct a Modical Image Database" Comput.Biol.Med.6. 77-85 (1996)
MITSURU IKEDA:“构建模态图像数据库所需的媒体大小的估计”Comput.Biol.Med.6。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
小栗宏次: "ニューラルネットによる慢性肝疾患診断支援システム「NI-SYS」" 医用電子と生体工学. 32. 106-111 (1994)
Koji Oguri:“使用神经网络的慢性肝病诊断支持系统“NI-SYS””《医疗电子和生物工程》32. 106-111 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
KAZUNOBU YAMAUCHI,TOSHIAKI FUKATU: "A dicision support system for diagnostic consultation in laboratory tests" MEDINFO'95. P1034 (1995)
KAZUNOBU YAMAUCHI,TOSHIAKI FUKATU:“实验室测试中诊断咨询的决策支持系统”MEDINFO95。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
MITSURU,IKEDA: "Estimation of the Size of the Media Necessary to Construct a Medical Image Database" Comput Biol Med. 6. 77-85 (1996)
MITSURU,IKEDA:“构建医学图像数据库所需的媒体大小的估计”Comput Biol Med。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
MITSURU IKEDA: "Development of Distributed Image Database Combined with Clinical Information in Hospital Information System" J.of Med.Systems. 19. 305-311 (1995)
MITSURU IKEDA:“医院信息系统中结合临床信息的分布式图像数据库的开发”J.of Med.Systems。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAUCHI Kazunobu其他文献

YAMAUCHI Kazunobu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAUCHI Kazunobu', 18)}}的其他基金

A study on a scientific management method for hospitals from the point of international perspectives
国际视野下医院科学管理方法研究
  • 批准号:
    20590530
  • 财政年份:
    2008
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Distance collaboration system using moving images.
使用移动图像的远程协作系统。
  • 批准号:
    12480261
  • 财政年份:
    2000
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A diagnosis-supporting system for medical images using multimedia collaboration system.
一种利用多媒体协作系统的医学图像诊断支持系统。
  • 批准号:
    08458087
  • 财政年份:
    1996
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
  • 批准号:
    RGPIN-2021-03194
  • 财政年份:
    2022
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Discovery Grants Program - Individual
Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
  • 批准号:
    RGPIN-2021-03194
  • 财政年份:
    2021
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Discovery Grants Program - Individual
DeepEngine: an expert system for prediction of vehicle engine breakdown
DeepEngine:汽车发动机故障预测专家系统
  • 批准号:
    556148-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Alliance Grants
Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
  • 批准号:
    DGECR-2021-00322
  • 财政年份:
    2021
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Discovery Launch Supplement
Development of miDOC: an expert system and methodology for multiple imputation
miDOC 的开发:多重插补的专家系统和方法
  • 批准号:
    MR/V020641/1
  • 财政年份:
    2021
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Research Grant
Digitalization infrastructure and expert system for cold spray additive manufacturing
冷喷涂增材制造数字化基础设施和专家系统
  • 批准号:
    105624
  • 财政年份:
    2020
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Collaborative R&D
DeepEngine: an expert system for prediction of vehicle engine breakdown
DeepEngine:汽车发动机故障预测专家系统
  • 批准号:
    556148-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Alliance Grants
SBIR Phase I: READ! Toolkit, A Knowledge-Based Expert System to Develop Beginning Literacy Curricula in Endangered or Underserved Languages
SBIR 第一阶段:阅读!
  • 批准号:
    1842833
  • 财政年份:
    2019
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
Evolutionary Virtual Expert System
进化虚拟专家系统
  • 批准号:
    EP/R029741/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Research Grant
Testing the long-term efficacy of a proactive expert system intervention to prevent alcohol use in the population
测试主动专家系统干预措施预防人群饮酒的长期有效性
  • 批准号:
    329378966
  • 财政年份:
    2017
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了