Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
基本信息
- 批准号:RGPIN-2021-03194
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aging drinking water systems (DWS) worldwide are under increasing pressure to reduce non-revenue water (NRW, estimated at over $14B USD/year), minimize energy costs, and cut greenhouse gas emissions (GHGs). However, the capital costs to replace this aging infrastructure, estimated by the American Water Works Association in 2019 to over $472B USD in the USA by 2039, is cost-prohibitive - triggering a need for innovative solutions to address these significant issues. Due to the latest developments in wireless sensors, many DWS are now collecting high-frequency streams of key variables (e.g., parcel level consumer water demand) at varying spatial and temporal scales, resulting in Big Data and prompting the conversion of traditional DWS to smart water networks (SWANs) that enable the mitigation of sub-optimal DWS operations (e.g., by minimizing energy usage). SWANs rely on expert systems based on data-driven models (e.g., machine learning) to identify optimal operational decisions that meet the goals of DWS managers, who struggle to sustainably operate DWS in the face of numerous uncertainties (e.g., changing water demand). However, SWANs are still in their infancy and there are no expert systems that can handle Big Data and account for uncertainty in DWS in a computationally efficient manner. My long-term vision is to optimize DWS through the use of SWANs. The next 5 years of my research program will focus on the most immediate needs to realize an expert system to address these important challenges. The expert system will be built sequentially through three short-term objectives: 1) novel state-of-the-art data-driven models will be explored for pre-processing and making accurate forecasts from Big Data associated with SWANs (e.g., parcel level consumer water demands); 2) these models will be incorporated in a novel stochastic framework to account for several important uncertainty sources (e.g., model structure) and temporal correlations to improve the reliability of the expert system; and 3) the previous two stages will be coupled with reinforcement learning for optimizing SWANs (with a focus on pump schedule optimization) according to key operational goals (minimizing NRW, energy costs, and/or GHGs). To demonstrate their superiority, the novel developments from each objective will be rigorously compared against current state-of-the-art methods and benchmark approaches adopted by water utilities. The proposed research will advance new knowledge on optimizing SWANs and provide a novel expert system for water utilities to address pressing challenges, with the potential to save utilities $4.6B USD/year in operation costs. Through my program, 8 student researchers will gain the skills necessary to make significant impacts at water utilities (e.g., City of Ottawa) and private firms invested in SWANs (e.g., Innovyze), contributing to the sustainable management of water resources and placing Canada at the forefront of research in SWANs.
全球老化的饮用水系统(DWS)面临着越来越大的压力,以减少无收益水(NRW,估计超过140亿美元/年),最大限度地降低能源成本,并减少温室气体排放(GHG)。然而,美国水务协会在2019年估计,到2039年,更换这种老化基础设施的资本成本将超过4720亿美元,这是成本高昂的-引发了对创新解决方案的需求来解决这些重大问题。由于无线传感器的最新发展,许多DWS现在正在收集关键变量的高频流(例如,在不同的空间和时间尺度上的地块级消费者用水需求),从而产生大数据并促使传统DWS向智能水网(SWAN)的转换,从而能够缓解次优DWS操作(例如,最大限度地减少能源消耗)。SWAN依赖于基于数据驱动模型的专家系统(例如,机器学习)来识别满足DWS管理者的目标的最佳操作决策,DWS管理者在面对许多不确定性(例如,改变水的需求)。然而,SWAN仍处于起步阶段,没有专家系统可以处理大数据并以计算高效的方式解释DWS中的不确定性。我的长期愿景是通过使用天鹅来优化DWS。在接下来的5年里,我的研究计划将集中在实现专家系统来解决这些重要挑战的最迫切需求上。该专家系统将通过三个短期目标依次构建:1)将探索最先进的数据驱动模型,用于预处理和从与SWAN相关的大数据(例如,地块级消费者水需求); 2)这些模型将被合并到新的随机框架中以考虑几个重要的不确定性源(例如,模型结构)和时间相关性,以提高专家系统的可靠性;以及3)前两个阶段将与强化学习相结合,以根据关键运营目标(最大限度地减少NRW,能源成本和/或GHG)优化SWAN(重点是泵计划优化)。为了证明它们的优越性,每个目标的新发展将与水务公司采用的当前最先进的方法和基准方法进行严格比较。拟议的研究将推进关于优化SWAN的新知识,并为水务公司提供一个新的专家系统,以应对紧迫的挑战,并有可能为水务公司每年节省46亿美元的运营成本。通过我的计划,8名学生研究人员将获得必要的技能,使水公用事业的重大影响(例如,渥太华市)和私人公司投资于天鹅(例如,Innovyze),为水资源的可持续管理做出贡献,并将加拿大置于SWAN研究的前沿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quilty, John其他文献
Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework
- DOI:
10.1016/j.jhydrol.2018.05.003 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:6.4
- 作者:
Quilty, John;Adamowski, Jan - 通讯作者:
Adamowski, Jan
On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction
- DOI:
10.1016/j.agrformet.2019.107647 - 发表时间:
2019-11-15 - 期刊:
- 影响因子:6.2
- 作者:
Ghaemi, Alireza;Rezaie-Balf, Mohammad;Quilty, John - 通讯作者:
Quilty, John
Quilty, John的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quilty, John', 18)}}的其他基金
Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
- 批准号:
RGPIN-2021-03194 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
- 批准号:
DGECR-2021-00322 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
ARF鸟苷酸交换因子BIG1介导ACSL4依赖性铁死亡在非酒精性脂肪性肝炎中的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Big Code深度背景增强的Android应用代码反混淆研究
- 批准号:61972290
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
BIG1介导STING囊泡转运在抗肺癌免疫反应中的作用及分子机制
- 批准号:81903639
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
水稻Big Grain3 通过调控细胞分裂素转运调节籽粒大小
- 批准号:2019JJ50243
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
ARF鸟苷酸交换因子BIG1调控巨噬细胞重编程在脓毒症免疫抑制形成中的作用及机制研究
- 批准号:81971488
- 批准年份:2019
- 资助金额:56.0 万元
- 项目类别:面上项目
控制豆科作物器官大小关键基因BIG SEEDS1的功能与应用研究
- 批准号:31771345
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
生长素转运调控基因BIG介导高浓度CO2下气孔关闭的分子机制
- 批准号:31171356
- 批准年份:2011
- 资助金额:65.0 万元
- 项目类别:面上项目
ARF鸟苷酸交换因子BIG1定向调控ABCA1功能的分子机制
- 批准号:81173056
- 批准年份:2011
- 资助金额:69.0 万元
- 项目类别:面上项目
BIG2介导的GABAA型受体转运模式及信号调控机制
- 批准号:31070924
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Leveraging complementary big data methods and patient intervention designs to optimize neural markers of adolescent cannabis use
利用互补的大数据方法和患者干预设计来优化青少年大麻使用的神经标记
- 批准号:
10739527 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Big-Data Visual Code Completion Leveraging the Naturalness of Visual Source Code
利用视觉源代码的自然性进行大数据视觉代码补全
- 批准号:
RGPIN-2022-03464 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Big Data Science to Focus the HIV Response in Countries with Generalized HIV Epidemics
利用大数据科学重点关注艾滋病毒流行国家的艾滋病毒应对工作
- 批准号:
10548465 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Leveraging Big Data Science to Focus the HIV Response in Countries with Generalized HIV Epidemics
利用大数据科学重点关注艾滋病毒流行国家的艾滋病毒应对工作
- 批准号:
10673799 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Leveraging Big Data for Transgender and Gender Minority Health Equity Research
利用大数据进行跨性别和性别少数群体健康公平研究
- 批准号:
10430577 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Cross-Leveraging Computational, System and Data Science in Support of Computational Epidemiology in the Era of Big Data
交叉利用计算、系统和数据科学支持大数据时代的计算流行病学
- 批准号:
RGPIN-2017-04647 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Big Data and Deep Learning to Develop Next Generation Decision Support Tools to Improve Glycemic Outcomes in Type 1 Diabetes
利用大数据和深度学习开发下一代决策支持工具以改善 1 型糖尿病的血糖结果
- 批准号:
10231944 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
- 批准号:
10369732 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
- 批准号:
RGPIN-2021-03194 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Big Sensed Data over Ubiquitous Networks
通过无处不在的网络利用大感知数据
- 批准号:
RGPIN-2017-06902 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual