Transport Equations, Mixing, and Fluid dynamics

传输方程、混合和流体动力学

基本信息

项目摘要

Advection-diffusion equations are of fundamental importance in many areas of physics, biology and engineering. They describe evolutionary systems, in which a scalar quantity is simultaneously diffused and advected by a given velocity field. In many applications, for instance, in the context of fluid dynamics, these velocity fields are highly irregular. Thanks to the regularizing effect of the diffusion operator, however, the mathematical model is often well-posed.In this project, several quantitative aspects shall be investigated. One of those is related to the mixing properties in fluids that is caused by shear flows. In this example, there is an interesting interplay between the (irregular) transport by the shear flow and the regularizing diffusion, which leads, after a certain time, to the emergence of a dominant length scale which persists during the subsequent evolution and determines mixing and dissipation rates. A rigorous understanding of relevant length scales and mixing rates is desired.It is expected that certain stability estimates, that compare solutions to advection-diffusion equations and those to pure advection equations, will play an important role in the mathematical analysis of these mixing processes. More general stability estimates for advection-diffusion equations will be derived. These shall give a deep insight into how solutions depend on variations of coefficients and initial data. In the derivation of these estimates, special attention will be given to a certain "flexibility" in the method of proof. To be more specific, the stability estimates shall apply not only to the continuous advection-diffusion equations, but also to its discrete variants. As a consequence, the new results shall subsequently be applied to approximate solutions given by suitable finite volume methods in order to estimate the error generated by the numerical scheme.
对流-扩散方程在物理学、生物学和工程学的许多领域都具有重要的意义。它们描述了演化系统,其中标量同时被给定的速度场扩散和平流。在许多应用中,例如,在流体动力学的背景下,这些速度场是高度不规则的。然而,由于扩散算子的正则化作用,数学模型往往是适定的。其中之一与剪切流引起的流体混合特性有关。在这个例子中,有一个有趣的相互作用之间的(不规则的)运输的剪切流和正则化扩散,这导致,经过一段时间后,出现了一个占主导地位的长度尺度持续在随后的演变,并确定混合和耗散率。严格理解相关的长度尺度和混合率是可取的。预计某些稳定性估计,比较对流扩散方程和那些纯对流方程的解决方案,将发挥重要作用,在这些混合过程的数学分析。更一般的对流扩散方程的稳定性估计将被导出。这些将深入了解解如何取决于系数和初始数据的变化。在推导这些估计时,将特别注意证明方法的某种“灵活性”。更具体地说,稳定性估计不仅适用于连续型对流扩散方程,而且适用于离散型对流扩散方程。因此,新的结果应随后应用于适当的有限体积法给出的近似解,以估计数值方案产生的误差。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Christian Seis其他文献

Professor Dr. Christian Seis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Christian Seis', 18)}}的其他基金

Mathematical analysis of bubble rings in ideal fluids
理想流体中气泡环的数学分析
  • 批准号:
    531098047
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Intersection Theory for Differential Equations
微分方程的交集理论
  • 批准号:
    2401570
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Using Artificial Intelligence to Solve Complex Flow Equations in a Wet Gas Environment
使用人工智能求解湿气体环境中的复杂流量方程
  • 批准号:
    10091110
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了