Modelling porosity in composite liquid infusion processes
模拟复合液体灌注过程中的孔隙率
基本信息
- 批准号:432847151
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Composites manufacturing to combine reinforcing fibres and liquid resin can be undertaken in different ways. The most popular method involves infusing the resin under pressure so that it is forced to permeate though a dry fabric that is held in closed tooling (Resin Transfer Moulding – RTM) or under vacuum membranes (Vacuum Infusion - VI). Subsequent curing then takes place before the part is removed for final machining. Regardless of the infusion method an essential requirement is full impregnation of the composite preform without defects. In practice this is difficult to realise, and a major problem is the generation of voids and porosity. Some porosity is always present; however, it should be limited to under 1-3% since even this amount can reduce composite strength properties by up to 20% and is especially detrimental to long term fatigue properties. Porosity in infusion processes is almost entirely due to the formation of air bubbles as the resin flows through the fibre reinforcement. At the flow front dual phase flow occurs involving combined fast flow of resin through gaps in the open fabric architecture, combined with delayed infiltration of the individual compact yarns, causing air entrapment and the creation of bubbles. Air may be permanently trapped or may evacuate the yarns and cling to the yarn by surface tension forces. With high pressure gradients bubbles may flow with the resin through channels in the fabric architecture, either to be trapped at some point, or to be evacuated at an outlet vent. Furthermore, bubbles may coalesce, or possibly collapse (diffusion). Finally, their size will change depending on their internal pressure at formation and final applied pressure during resin cure. The final size and distribution of these bubbles determines the porosity distribution.This project will investigate experimentally the processing conditions that create bubbles, the mechanisms of bubble migration and the processing conditions that determine final void sizes and porosity in cured composites. The work will be supported by numerical methods for prediction using finite element (FE) and analytical solutions to obtain criteria for porosity generation. A final task will develop FE and surrogate models using artificial intelligence (artificial neural network - ANN) solutions to predict porosity of two demonstrator parts. The ANN approach is of special interest, since such a technique is computationally fast and could, conceivably, be used in ‘real time’ to monitor sensors in infusion manufacture of a part and control flow rates in for minimum void content.
复合材料的制造结合了增强纤维和液体树脂可以采取不同的方式。最流行的方法是在压力下注入树脂,使其通过封闭模具(树脂转移成型- RTM)或真空膜(真空注入- VI)中的干燥织物渗透。随后的固化在零件被移除进行最终加工之前进行。无论采用何种灌注方法,一个基本要求是完全浸渍复合预制体而无缺陷。在实践中,这是很难实现的,一个主要问题是空隙和孔隙度的产生。一些孔隙总是存在的;然而,它应该限制在1-3%以下,因为即使是这个量也会使复合材料的强度性能降低20%,对长期疲劳性能尤其有害。注入过程中的孔隙几乎完全是由于树脂流过纤维增强物时形成的气泡造成的。在流动前沿,树脂通过开放织物结构间隙的快速流动,加上单个致密纱线的延迟渗透,导致空气夹持和气泡的产生,从而发生双相流动。空气可能会被永久地困住,也可能会因表面张力而从纱线中排出并附着在纱线上。在高压梯度下,气泡可能随着树脂流过织物结构中的通道,要么被困在某个点上,要么被排出风口。此外,气泡可能会合并,也可能会崩溃(扩散)。最后,它们的尺寸将根据形成时的内部压力和树脂固化过程中的最终施加压力而变化。这些气泡的最终大小和分布决定了孔隙度的分布。该项目将通过实验研究产生气泡的加工条件、气泡迁移机制以及决定固化复合材料最终空隙尺寸和孔隙率的加工条件。这项工作将得到数值方法的支持,利用有限元(FE)和解析解来预测孔隙度的产生。最后一项任务将使用人工智能(人工神经网络- ANN)解决方案开发有限元和替代模型,以预测两个演示部件的孔隙率。人工神经网络方法是特别有趣的,因为这种技术计算速度快,可以想象,用于“实时”监测输液制造中的传感器,并控制最小空隙含量的流速。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Peter Middendorf其他文献
Professor Dr.-Ing. Peter Middendorf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Peter Middendorf', 18)}}的其他基金
Modelling damage and residual indentation from composites impact
模拟复合材料冲击造成的损坏和残留压痕
- 批准号:
428994763 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Multifunktionale, hybride Sandwichstrukturen für flächige und rohrförmige Konstruktionselemente
适用于扁平和管状建筑元件的多功能混合夹层结构
- 批准号:
84968675 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Units
Mesoscopic damage analysis of braided composites using mesh-superposition techniques for static failure and impact loading
使用静态失效和冲击载荷的网格叠加技术对编织复合材料进行细观损伤分析
- 批准号:
463336942 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Bioengineered Composite for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物工程复合材料
- 批准号:
10639077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A nanofiber-hydrogel composite plug for perianal fistula repair
用于肛周瘘修复的纳米纤维-水凝胶复合塞
- 批准号:
10607324 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Acellular composite hydrogel scaffolds for volumetric muscle regeneration
用于体积肌肉再生的脱细胞复合水凝胶支架
- 批准号:
10835331 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development and Pre-Clinical Testing of PEKK/Silicon Nitride Composite Craniomaxillofacial Implants
PEKK/氮化硅复合颅颌面植入物的开发和临床前测试
- 批准号:
10381823 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Acellular composite hydrogel scaffolds for volumetric muscle regeneration
用于体积肌肉再生的脱细胞复合水凝胶支架
- 批准号:
10555267 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Bioprintable composite materials and microfluidic tools for vocal fold restoration and repair
用于声带修复和修复的生物打印复合材料和微流体工具
- 批准号:
10321288 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multi-Tissue Craniofacial Engineering using 3D-BMP9-Notch-Synergized Graphene Citrate Composite Scaffolds
使用 3D-BMP9-Notch-协同石墨烯柠檬酸盐复合支架的多组织颅面工程
- 批准号:
10546478 - 财政年份:2021
- 资助金额:
-- - 项目类别:
3D Printed Silicon Nitride Porous PEEK Composite Spinal Cages for Anti-Infection
3D 打印氮化硅多孔 PEEK 复合脊柱笼用于抗感染
- 批准号:
10819309 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10606592 - 财政年份:2021
- 资助金额:
-- - 项目类别: