Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
基本信息
- 批准号:10606592
- 负责人:
- 金额:$ 43.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-03 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAnisotropyArchitectureAutologousBiocompatible MaterialsBiological ProcessBiophysicsBlood VesselsBone InjuryBone MarrowBone RegenerationCalvariaClinicalCollagenComplexComplicationCongenital AbnormalityDataDefectDepositionDoseEndothelial CellsFailureFamilyGlycoproteinsGoldHistologicImplantIn VitroInvadedMalignant NeoplasmsMechanicsMesenchymal Stem CellsMethodsModelingNatural regenerationNatureOperative Surgical ProceduresOryctolagus cuniculusOsteoclastsOsteogenesisPerformancePhenotypePolymersPopulationPorosityPrintingProcessProductionProliferatingPropertyReceptor SignalingReconstructive Surgical ProceduresResearchShapesSignal TransductionStructureTechnologyTimeTissue EngineeringTraumaTumor necrosis factor receptor 11bVascular remodelingWorkbonebone morphogenetic protein receptorscollagen scaffoldcostcraniofacialcraniofacial bonecraniumdefined contributiondesignhealingimprovedin vivoin vivo regenerationinhibitorinnovationmechanical propertiesmechanotransductionmillimetermineralizationmorphogensosteogenicosteoprogenitor cellpre-clinicalprocess improvementprototypereconstructionrecruitregeneration potentialregenerativeregenerative therapyrepairedsample fixationscaffoldstemstem cell expansionstem cellsstroke therapy
项目摘要
ABSTRACT
Defects in craniofacial bones of the skull occur congenitally, after high-energy impacts, and during the course of
treatment for stroke and cancer. Autologous bone or alloplastic implants are the current gold-standards for
surgical reconstruction. However, limited quantities and time-intensive intraoperative fitting of autologous bone,
the non-regenerative nature of alloplastic implants, and surgical challenges that stem from irregular defect
margins and the quality of the surrounding bone all contribute to poor healing and high complication rates. A
biomaterial that could be shaped precisely and quickly like an alloplastic implant but that works in a regenerative
fashion like autologous bone would be transformative for craniofacial reconstruction. The objective of this
proposal is to potentiate regeneration of the structure, composition, and mechanical properties of craniofacial
bone using an innovative scaffold-mesh composite biomaterial. We have generated extensive proof-of-principle
data for a surgically-practical composite biomaterial for craniofacial bone regeneration. Our core technology is a
porous mineralized collagen scaffold to expand MSCs in vivo. We have identified microstructural features of this
material to activate mechanotransduction and BMP receptor signaling to accelerate MSC osteogenicity and
secretion of osteoprotegerin (OPG), a soluble glycoprotein and endogenous inhibitor of osteoclast activity. As a
result, this material increases osteogenicity and transiently inhibits osteoclast activity to accelerate regenerative
healing of craniofacial bone defects osteogenic supplements or exogenously-seeded stem cells. We have
independently developed a millimeter-scale polymeric mesh that can be integrated into the scaffold, à la rebar
in concrete, to form a modular composite that can be shaped intraoperatively to conformally fit irregular defects.
Excitingly, prototype scaffold-mesh composites generated using a mesh printed from an advanced Hyperelastic
Bone® material increases MSC OPG secretion. These findings suggest the exciting possibility to co-optimize
scaffold microstructural properties as well as the composition and architecture of the integrated polymer mesh
to both passively aid surgical-practicality and actively accelerate regenerative healing. Our central hypothesis is
that a multi-scale scaffold-mesh composite will accelerate MSC recruitment and retention, increase osteogenesis
while inhibiting osteoclast activity, and facilitate vascular remodeling to improve regeneration. To do this we will
first define the contribution of scaffold anisotropy on the recruitment and activity of osteoprogenitors and
endothelial cells (Aim 1). We will establish topology parameters of a scalable mesh to aid surgical practicality
and regenerative potential (Aim 2). Lastly, we will demonstrate in vivo efficacy of a scaffold-mesh composite in
a confined calvarial defect model (Aim 3). Our unified effort to develop craniofacial regenerative technologies
will generate significant preclinical data to support an FDA IDE application essential for accelerating this
technology towards clinical use as a material-only regenerative therapy for craniofacial bone injuries.
抽象的
在高能撞击之后,颅骨颅骨的缺陷在先天性出现。
中风和癌症的治疗。自体骨或同种异体牙齿是当前的金标准
手术重建。但是,自体骨的数量有限和时间密集型术中拟合,
同种异体焦眼的非再生性质,以及源于不规则缺陷的手术挑战
边缘和周围骨骼的质量都导致愈合不良和高并发症发生率。一个
生物材料可以像同种异体植入物一样精确而迅速地形成,但可在再生中起作用
像自体骨一样的时尚将是颅面重建的变化。这个目的
建议是颅面的结构,组成和机械性能的潜在再生
使用创新的脚手架 - 现象复合生物材料的骨头。我们已经获得了广泛的原理证明
用于颅面骨再生的手术实行复合生物材料的数据。我们的核心技术是
多孔矿化胶原蛋白支架以在体内扩展MSC。我们已经确定了这一点的微观结构特征
激活机械转导和BMP受体信号的材料,以加速MSC成骨和
骨蛋白蛋白蛋白酶(OPG)的分泌,一种可溶性糖蛋白和破骨细胞活性的内源性抑制剂。作为
结果,该材料会增加成骨和瞬时抑制破骨细胞活性以加速再生
颅面骨缺损的愈合可造成成骨补充剂或外生物种子的干细胞。我们有
独立开发了一个毫米尺度的聚合物网,可以集成到脚手架中àlarebar
在混凝土中,形成一个模块化复合材料,可以在术中形成术中形状,以形成一个不规则的不规则缺陷。
令人兴奋的是,使用高级超弹性印刷的网格产生的原型支架网状复合材料
Bone®材料增加了MSC OPG分泌。这些发现表明了合作优化的令人兴奋的可能性
脚手架微观结构特性以及集成聚合物网的组成和结构
既可以被动地帮助手术实践性,又可以积极加速再生愈合。我们的中心假设是
多尺度的脚手架 - 网状复合材料将加速MSC募集和保留率,增加成骨的作用
同时抑制破骨细胞活性,并促进血管重塑以改善再生。为此,我们将
首先定义脚手架各向异性对破骨者和活性的贡献
内皮细胞(AIM 1)。我们将建立可扩展网格的拓扑参数,以帮助手术实践
和再生潜力(目标2)。最后,我们将演示脚手架复合材料的体内效率
狭窄的颅缺陷模型(AIM 3)。我们开发颅面再生技术的统一努力
将生成重要的临床前数据,以支持FDA IDE应用程序加速至关重要
用于临床用作颅骨骨损伤的仅材料再生疗法的技术。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amnion and chorion matrix maintain hMSC osteogenic response and enhance immunomodulatory and angiogenic potential in a mineralized collagen scaffold.
- DOI:10.3389/fbioe.2022.1034701
- 发表时间:2022
- 期刊:
- 影响因子:5.7
- 作者:Kolliopoulos, Vasiliki;Dewey, Marley J.;Polanek, Maxwell;Xu, Hui;Harley, Brendan A. C.
- 通讯作者:Harley, Brendan A. C.
Legal Penalties for Physicians Providing Gender-Affirming Care.
对提供性别肯定护理的医生的法律处罚。
- DOI:10.1001/jama.2023.8232
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mallory,Christy;Chin,MadelineG;Lee,JustineC
- 通讯作者:Lee,JustineC
Modulating Temporospatial Phosphate Equilibrium by Nanoparticulate Mineralized Collagen Materials Induces Osteogenesis via PiT-1 and PiT-2.
通过纳米颗粒矿化胶原材料调节时空磷酸盐平衡通过 PiT-1 和 PiT-2 诱导成骨。
- DOI:10.1002/adhm.202202750
- 发表时间:2023
- 期刊:
- 影响因子:10
- 作者:Ren,Xiaoyan;Zhou,Qi;Bedar,Meiwand;Foulad,David;Huang,KellyX;Dejam,Dillon;Dahan,NatalieJ;Kolliopoulos,Vasiliki;Harley,BrendanAC;Lee,JustineC
- 通讯作者:Lee,JustineC
Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology.
- DOI:10.1002/adhm.202200471
- 发表时间:2022-10
- 期刊:
- 影响因子:10
- 作者:Tiffany, Aleczandria S.;Harley, Brendan A. C.
- 通讯作者:Harley, Brendan A. C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan A. Harley其他文献
Brendan A. Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan A. Harley', 18)}}的其他基金
Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
- 批准号:
10831221 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818769 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818804 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10390730 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10493341 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10666626 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10400873 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Gradient biomaterials to investigate niche regulation of hematopoiesis
梯度生物材料研究造血的生态位调节
- 批准号:
10413538 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10185367 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10495364 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 43.23万 - 项目类别:
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
- 批准号:
10556664 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Translational Research and Implementation Science for Nurses (TRAIN) Program 2.0
护士转化研究和实施科学 (TRAIN) 计划 2.0
- 批准号:
10680769 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别: