A Study on Improvements of Noise Rebustness for HMM-based Speech Recognition
基于HMM的语音识别抗噪性改进研究
基本信息
- 批准号:05680294
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to realize robust continuous density Hidden Markov Models (HMM) for noisy speech recognition, this study develops a frequency-weighted HMM based on the human auditory characteristics which is seseitive to formant peaks in high SNR frequency region. In this HMM,the covariance matrices of Gaussian probability density functions are fixed to the inverse of frequency weighting matrices in order to utilize the robustness of group delay spectra and also to incorporate their relative perceptual importance in frequency domain into HMM.Several frequency weighting functions and the scaling methods of frequency weighting matrices are examined using the international data base of NOISEX-92. The results of word recognition tests are summarized as follows.(1) The smoothed power spectrum derived from each mean vector gives the most robust HMM.(2) The optimum scaling to convert the weighting matrices to the covariance matrices is such that the sum of weighting coefficients is equal to one or the determinants of the converted covariances are 50 to 150 times larger than those of initial HMMs.(3) A larger number of states is required to attain the robustness in the frequency-weighted HMM.(4) Adaptive preemphasis improves the robustness to noises which have less energy in the high frequency region.(5) The frequency-weighted HMM attains SNR gains of 6 to 12 dB over a standard diagonal HMM for white, pink, and car noises.(6) Even when preprocessing the noisy speech by the standard noise reduction method of spectral subtraction, the frequency weighted HMM attains about 10% higher recognition scores in very low SNR condition than the conventional HMM.
为了实现用于噪声语音识别的鲁棒连续密度隐马尔可夫模型(HMM),本研究开发了一种基于人类听觉特征的频率加权隐马尔可夫模型,该模型对高信噪比频率区域的共振峰峰值敏感。在该HMM中,将高斯概率密度函数的协方差矩阵固定为频率加权矩阵的逆,以利用群延迟谱的鲁棒性,并将它们在频域中的相对感知重要性纳入HMM中。使用NOISEX-92国际数据库研究了几种频率加权函数和频率加权矩阵的缩放方法。单词识别测试的结果总结如下:(1)从每个均值向量导出的平滑功率谱给出了最稳健的HMM。(2)将权重矩阵转换为协方差矩阵的最佳缩放比例是使得权重系数之和等于1或者转换后的协方差的行列式比初始HMM大50到150倍。(3)更多的状态 需要获得频率加权 HMM 的鲁棒性。(4) 自适应预加重提高了对高频区域能量较少的噪声的鲁棒性。(5) 对于白噪声、粉红噪声和汽车噪声,频率加权 HMM 比标准对角线 HMM 获得了 6 至 12 dB 的 SNR 增益。(6) 即使通过标准频谱降噪方法对带噪语音进行预处理 通过减法,频率加权 HMM 在非常低的 SNR 条件下获得比传统 HMM 高约 10% 的识别分数。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
永山 亮、松本 弘: "音声認識における雑音付加HMMの自動生成" 日本音響学会講演論文集. 59-60 (1995)
Ryo Nagayama、Hiroshi Matsumoto:“自动生成用于语音识别的噪声 HMM”,日本声学学会会议记录 59-60 (1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Matsumoto: "Robust speech recognition in noisy environments" Proc. of Int. Workshop on Human Interfase Technology. 1-8 (1994)
H.Matsumoto:“嘈杂环境中的鲁棒语音识别”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Matsumoto & Y.Nimura: "A Frequency-weighted continuous density HMM for noisy speech recognition" Proc.of Int.Conf.on Spoken Language Processing. 1007-1010 (1994)
松本
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Masumoto: "Robust speech recognition in noisy environments" Proc.of Int.Workshop on Human Interface Technology. 1-8 (1994)
H.Masumoto:“嘈杂环境中的鲁棒语音识别”Proc.of Int.Workshop on Human Interface Technology。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Matsumoto: "Robust speech recognition in noisy environments" Proc.of Int. Workshop on Human Interface Technology. 1-8 (1994)
H.Matsumoto:“嘈杂环境中的鲁棒语音识别”Proc.of Int。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUMOTO Hiroshi其他文献
MATSUMOTO Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUMOTO Hiroshi', 18)}}的其他基金
Study of treatment effect for sleep bruxism with using two different type of splint alternately.
两种不同类型夹板交替使用治疗睡眠磨牙症的效果研究
- 批准号:
25861852 - 财政年份:2013
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The Relationship between Visceral Fat, Adipoctokines and colorectal neoplasma development evaluated by computed tomography (CT) colonography
通过计算机断层扫描(CT)结肠成像评估内脏脂肪、脂肪因子与结直肠肿瘤发展之间的关系
- 批准号:
23591805 - 财政年份:2011
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A System Dynamics Model of Urban Energy Flow in Asian Core Cities
亚洲核心城市城市能量流系统动力学模型
- 批准号:
21560611 - 财政年份:2009
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Disturbance of innate immune system in alcoholic sudden death and organ damage
先天免疫系统紊乱导致酒精性猝死和器官损伤
- 批准号:
20390196 - 财政年份:2008
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
アルコール濫用による細胞・組織防御システムの破綻機構
酗酒导致细胞和组织防御系统崩溃的机制
- 批准号:
18390206 - 财政年份:2006
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular mechanisms of disturbance in cell survival system by alcohol abuse
酗酒扰乱细胞生存系统的分子机制
- 批准号:
16390196 - 财政年份:2004
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Hands free speech recognition method based on auditory characteristics
基于听觉特征的免提语音识别方法
- 批准号:
15500106 - 财政年份:2003
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the development of an air cleaner using adsorption/desorption effect and its performance evaluation
利用吸附/解吸效应的空气净化器的研制及其性能评价
- 批准号:
15560512 - 财政年份:2003
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular Mechanisms of Tolerance to Reactive Oxygen Species and Its Induction in Weeds
杂草对活性氧的耐受及其诱导的分子机制
- 批准号:
15380011 - 财政年份:2003
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on ion-wave-plasmas interactions in space plasmas via spacecraft observations and computer experiments-Breakthrough of the magnetospheric physics
通过航天器观测和计算机实验研究空间等离子体中离子波等离子体相互作用——磁层物理的突破
- 批准号:
15204044 - 财政年份:2003
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Detecting Movement Onset During Closed-Loop Stimulation Using A Hidden Markov Model.
使用隐马尔可夫模型检测闭环刺激期间的运动起始。
- 批准号:
10842105 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Spatial Capture-recapture with Memory: A New Hidden Markov Model Perspective
空间捕捉-用记忆重新捕捉:新的隐马尔可夫模型视角
- 批准号:
EP/W002248/1 - 财政年份:2022
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant
Spatial Capture-recapture with Memory: A New Hidden Markov Model Perspective
空间捕捉-用记忆重新捕捉:新的隐马尔可夫模型视角
- 批准号:
EP/W001616/1 - 财政年份:2022
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant
Merged-Output Hidden Markov Model and Its Applications in Music Information Processing
合并输出隐马尔可夫模型及其在音乐信息处理中的应用
- 批准号:
25880029 - 财政年份:2013
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Functional Model of Acquisition of Spoken Language Using Categorical Algorithm and Hidden Markov Model
使用分类算法和隐马尔可夫模型的口语习得功能模型
- 批准号:
25330201 - 财政年份:2013
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a hidden Markov model for weather simulation
开发用于天气模拟的隐马尔可夫模型
- 批准号:
400467-2010 - 财政年份:2010
- 资助金额:
$ 1.15万 - 项目类别:
University Undergraduate Student Research Awards
A temporal hidden Markov model approach to investigating the evolutionary fate of duplicated genes
研究重复基因进化命运的时间隐马尔可夫模型方法
- 批准号:
BB/H000445/1 - 财政年份:2010
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant
Computationally efficient estimation of the error rates of hidden Markov model results
隐马尔可夫模型结果错误率的计算有效估计
- 批准号:
0914739 - 财政年份:2009
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
A Hidden Markov Model Based Segmentation Framework for MR Spectroscopy Imaging
基于隐马尔可夫模型的磁共振波谱成像分割框架
- 批准号:
7107639 - 财政年份:2006
- 资助金额:
$ 1.15万 - 项目类别:
Hidden markov model sensor scheduling
隐马尔可夫模型传感器调度
- 批准号:
251246-2002 - 财政年份:2005
- 资助金额:
$ 1.15万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




