Ultra long distance and high capacity optical fiber transmission system using midway optical phase conjugation

采用中途光相位共轭的超长距离大容量光纤传输系统

基本信息

  • 批准号:
    06452240
  • 负责人:
  • 金额:
    $ 4.61万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1995
  • 项目状态:
    已结题

项目摘要

In an optical amplifier chain, transmission distance beyond 1,000km is attained without using regenerating rapeaters, because optical loss in fibers is periodically compensated. However, in such a system, the optical power is maintained at a high level along the entire system length and hence the Kerr nonlinearity of optical fibers can no longer be ignored. The Kerr nonlinearity, in turn, interplys with the group velocity dispersion of fibers, causing serious waveform distortion. To cope with this problem, we propose an optical transmission system using midway optical phase conjugtion, and investigate the feasibility of the system. The main results obtained in this research project are shown in the following.(1) We found that the insufficient efficiency of waveform distortion compensation was mainly caused by the sideband modulation instability originated from the periodic optical power distribution, and obtained the design rule of the system to maximize the efficiency by reducing the effiect of sideband modulation instability.(2) The optical phase conjugator using dispersion shifted optical fibers was designed. We achieved the conversion efficiency of several percent by the device fabricated according to the design.(3) The optical phase conjugator using semiconductor optical amplifiers was demonstrated. When the pump-probe detuning was 200GHz, the conversion efficiency larger than OdB was achieved. The introduction of this device into the transmission system was effective for eliminating the four wave mixing generated in optical fibers.
在光放大器链中,由于光纤中的光损耗被周期性地补偿,因此在不使用再生中继器的情况下,传输距离可以达到1,000公里以上。然而,在这样的系统中,光功率沿整个系统长度沿着保持在高水平,因此光纤的克尔非线性不能再被忽略。克尔非线性又与光纤的群速度色散相互交织,造成严重的波形失真。为了科普这个问题,我们提出了一种利用中间相位共轭的光传输系统,并研究了该系统的可行性。本研究项目取得的主要成果如下。(1)通过分析发现,波形失真补偿效率不足的主要原因是光功率周期性分布引起的边带调制不稳定性,并得出了通过减小边带调制不稳定性的影响来最大化补偿效率的系统设计准则。(2)设计了色散位移光纤相位共轭器。根据设计制作的器件,获得了几个百分点的转换效率. (3)介绍了利用半导体光放大器实现的光相位共轭器。当抽运-探测失谐量为200 GHz时,转换效率大于0 dB。将该器件引入传输系统,对消除光纤中产生的四波混频是有效的。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
C.Lorotlanasane and K.Kikuchi: "Design of long-distance optical trans-mission systems using midway optical phase conjugation" IEEE Photonics Technology Letters. 7. 1375-1377 (1995)
C.Lorotlanasane 和 K.Kikuchi:“使用中途光相位共轭设计长距离光传输系统”IEEE 光子技术快报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kikuch et al.: "Observation of quasi-phase matched fourwave mixing assisted by periodic in a long-distance optical amplifier chain" IEEE Photomics Technal.Lett. Vol.7. 1378-1380 (1995)
K.Kikuch 等人:“长距离光学放大器链中周期性辅助的准相位匹配四波混频的观察”IEEE Photomics Technal.Lett。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kikuchi,他3名: "Analysis of origin of nonlinear gain in 1.5μm semiconductor active layear by highly nondegenerate four-wave mixing" Appl.Phys.Lett.64. 548-550 (1994)
K. Kikuchi 和其他 3 人:“通过高度非简并四波混频分析 1.5μm 半导体有源层中非线性增益的起源”Appl.Phys.Lett.64 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kikuchi,他3名: "Measurement of differential gain and linewidth enhancement factor of 1.5-μm strained quantum-well active layers" IEEE J.Quantum Electron.30. 571-577 (1994)
K. Kikuchi 和其他 3 人:“1.5 μm 应变​​量子阱有源层的差分增益和线宽增强因子的测量”IEEE J.Quantum Electron.30 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kikuchi and C.Lorattanasane: "Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugator" IEEE Photonics Technol.Lett.6. 104-105 (1994)
K.Kikuchi 和 C.Lorattanasane:“使用中途光学相位共轭器补偿超长距离光通信系统中的脉冲波形失真”IEEE Photonics Technol.Lett.6。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIKUCHI Kazuro其他文献

KIKUCHI Kazuro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIKUCHI Kazuro', 18)}}的其他基金

Wavelength-path optical networks based on digital coherent receivers
基于数字相干接收机的波长路径光网络
  • 批准号:
    24656223
  • 财政年份:
    2012
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on Ultra-long Large-capacity Coherent Optical TransmissionSystems Aiming at Realization of the Shannon Limit
以实现香农极限为目标的超长大容量相干光传输系统研究
  • 批准号:
    22246046
  • 财政年份:
    2010
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study on Ultra-wideband Measurements of Optical Electric Fields for Optical Fiber Communications
光纤通信光电场超宽带测量研究
  • 批准号:
    22656090
  • 财政年份:
    2010
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on all optical signal regeneration technology in ultrafast optical communication system
超快光通信系统全光信号再生技术研究
  • 批准号:
    12305026
  • 财政年份:
    2000
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Multi-wavelength pulse source using fowner synthesis
使用 fowner 合成的多波长脉冲源
  • 批准号:
    10555014
  • 财政年份:
    1998
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ultra wideband WDM optical commune cat ion systems using optical phase conjugation
使用光相位共轭的超宽带WDM光通信系统
  • 批准号:
    10450144
  • 财政年份:
    1998
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ultra-fast optical fiber communication systems using third-order optical nonlinearity in semiconductor optical amplifiers
在半导体光放大器中使用三阶光学非线性的超快光纤通信系统
  • 批准号:
    08455173
  • 财政年份:
    1996
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Frequency synchronization in dence FDM optical networks
FDM光网络中的频率同步
  • 批准号:
    07555118
  • 财政年份:
    1995
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Devices for Transmitter, Wave-Propagation, and Receiver in Coherent Optical Communication Systems
相干光通信系统中的发射机、波传播和接收机设备
  • 批准号:
    61420031
  • 财政年份:
    1986
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)

相似海外基金

PFI-TT: Metasurface-Optical Fiber Endoscopy Probe for Advanced Imaging
PFI-TT:用于高级成像的超表面光纤内窥镜探头
  • 批准号:
    2345825
  • 财政年份:
    2024
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Development of Robotic Forceps for Myocardial Biopsy with Optical Fiber Pressure Sensing Mechanism and Tip Driving Operation
光纤压力传感及尖端驱动操作的心肌活检机器人钳的研制
  • 批准号:
    23K07572
  • 财政年份:
    2023
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optical fiber rangefinder dynamically updating resolution and dynamic range by optical frequency modulation
光纤测距仪通过光学频率调制动态更新分辨率和动态范围
  • 批准号:
    23K13342
  • 财政年份:
    2023
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design of an optical fiber-based shape sensing needle with embedded fiber Bragg grating strain sensors for minimally invasive surgical procedures
用于微创外科手术的带有嵌入式光纤布拉格光栅应变传感器的基于光纤的形状传感针的设计
  • 批准号:
    576437-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Optical Fiber Communication Systems for the Connected World
互联世界的光纤通信系统
  • 批准号:
    RGPIN-2019-05657
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous Constellation Shaping for Coherent Optical Fiber Communications
相干光纤通信的自主星座整形
  • 批准号:
    RGPIN-2018-05491
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Discovery Grants Program - Individual
Optical Fiber Communications Systems
光纤通信系统
  • 批准号:
    CRC-2019-00090
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Canada Research Chairs
Mathematical modelling of stress member collapse during optical fiber preform manufacturing
光纤预制棒制造过程中受力构件塌陷的数学模型
  • 批准号:
    10039643
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Collaborative R&D
Investigation into optical fiber waveguides, lasers and applications
光纤波导、激光器及其应用研究
  • 批准号:
    RGPIN-2017-05379
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Discovery Grants Program - Individual
Innovative Designs of Optical Fiber Components, Devices, and Sources Compatible with the Mid-Infrared
与中红外兼容的光纤元件、器件和光源的创新设计
  • 批准号:
    RGPIN-2022-03989
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了