疲労機構解明のための疲労き裂先端の塑性変形の実時間測定

实时测量疲劳裂纹尖端的塑性变形以阐明疲劳机制

基本信息

  • 批准号:
    06452326
  • 负责人:
  • 金额:
    $ 4.99万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 无数据
  • 项目状态:
    已结题

项目摘要

材料の開発は高強度材料から高信頼性材料へと移行している。ここで問題となっているのは、繰り返し荷重あるいは温度変化に伴う材料の疲労劣化と破壊である。特に疲労き裂に関しては、その伝播機構が未だ充分に解明されていない。この原因は、疲労き裂先端の極微小な領域で生じる塑性変形が材料表面でしか測定できない点にある。本研究は、き裂内部の極微小な領域で生じる塑性変形を直接観察する方法を開発し、疲労き裂の伝播機構を考察することを目的として行われた。溶液中、定電位で不動態化している金属に塑性変形を与えると、不動態皮膜に覆われていない金属の面が生成し、この面は急速に不動態化し、分極電流が観察される。本研究では、音響学で用いられる原波形解析の手法を応用した波形解析ソフトウェアを作製し、観察される分極電流を解析した。これにより、従来測定できなかったき裂先端で起きる微小な塑性変形の量を実時間で定量化することが可能となった。この手法を用いて、純チタンで疲労き裂伝播試験を行い、負荷荷重の変化に伴って起きる塑性変形量の変化を測定し、従来より提案されている疲労き裂伝播機構のモデルと比較した。従来のモデルのうち最も有力視されているものの一つにき裂先端でふたつのすべり系が交互に働くモデルがある。しかし、このモデルによって予想されるき裂開口量に対する塑性変形量の変化と、今回実際に測定された塑性変形量の変化とは異なっていることが明らかとなった。このことより、き裂先端でふたつのすべり系が交互に働くだけではなく、別の塑性変形がき裂先端付近で起きていることが見いだされた。このことは、従来提案されている疲労き裂伝播モデルでは定量的に示されておらず、疲労き裂伝播モデルに新たな方向を示すものである。
The development of materials from high-strength materials to high-reliability materials and migration. This problem is caused by temperature change, material fatigue and deterioration. In particular, there is a lack of understanding of the relationship between the two organizations. The cause of this is that the surface of the material is plastically deformed and the tip of the crack is small. This study aims to investigate the plastic deformation of small particles in cracks and cracks directly. In solution, the potential is not dynamic, the plastic deformation of the metal is not dynamic, the surface of the metal is not dynamic, the surface of the metal is not dynamic, and the polarization current is observed. In this study, the method of original waveform analysis was used to analyze the polarization current. The amount of minute plastic deformation is quantified in time. This method is used in the test of fatigue crack propagation, the change of load, the change of plastic deformation, and the comparison of fatigue crack propagation mechanism. The most powerful of these is the most powerful of these, the most powerful of these is the most powerful of these. For example, if you want to change the amount of plastic deformation, you can change the amount of plastic deformation. This is the first time that a person's body has been broken, and the first time that he has been broken, he has been broken. This is the first time that a new direction has been shown in a quantitative manner.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

肥後 矢吉其他文献

Ni電気めっき膜の成長挙動におよぼす基板の影響
基体对镀镍膜生长行为的影响
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    島田 貴文;柴田 曉伸;石山千恵美;曽根 正人;肥後 矢吉
  • 通讯作者:
    肥後 矢吉
ナノ・マイクロ微粒子の自己組織化パターニング
纳米/微米颗粒的自组织图案化
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    石山 千恵美;松崎 純平;曽根 正人;肥後 矢吉;増田 佳丈
  • 通讯作者:
    増田 佳丈
電解研磨により作製したSUS304微小引張試験片の機械的性質
电解抛光制备SUS304微拉伸试件的力学性能
マイクロサイズ曲げ試験によるMEMS用厚膜レジストSU-8の塑性変形挙動
通过微尺寸弯曲测试用于MEMS的厚膜抗蚀剂SU-8的塑性变形行为
Ni-PPlating on Polymer Substrate using Supercritical Carbon Dioxide
使用超临界二氧化碳在聚合物基材上进行镀镍
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Woo Byung Hoon;曽根 正人;柴田 曉伸;石山 千恵美;肥後 矢吉
  • 通讯作者:
    肥後 矢吉

肥後 矢吉的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('肥後 矢吉', 18)}}的其他基金

高機能MEMS用微小金属間化合物に対する材料強化法の開発
高性能MEMS微观金属间化合物材料强化方法的开发
  • 批准号:
    04F04104
  • 财政年份:
    2004
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
金属ガラスの極微小化における力学特性評価とその寸法効果
金属玻璃超小型化的机械性能和尺寸效应评估
  • 批准号:
    15074205
  • 财政年份:
    2003
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
金属間化合物のマイクロサイズ試験片に対する耐疲労強化法の開発
金属间化合物微米级试样疲劳强化方法的开发
  • 批准号:
    99F00068
  • 财政年份:
    2000
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
サブミクロンサイズの超徴小材料における強化機構の開発
亚微米级超小型材料强化机制的发展
  • 批准号:
    10875133
  • 财政年份:
    1998
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
腐食疲労における不動態皮膜の挙動
腐蚀疲劳过程中钝化膜的行为
  • 批准号:
    59550483
  • 财政年份:
    1984
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
金属単結晶の疲労き裂伝播に関する研究
金属单晶疲劳裂纹扩展研究
  • 批准号:
    X00210----475569
  • 财政年份:
    1979
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
鉄合金におけるαマルテンサイト変態成長機構に関する研究
铁合金中α-马氏体相变长大机制研究
  • 批准号:
    X00210----075154
  • 财政年份:
    1975
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

分子吸着による塑性変形挙動の変化を利用した“潤滑”に依存しない切削加工技術の探求
利用分子吸附引起的塑性变形行为的变化,探索不依赖“润滑”的切削技术
  • 批准号:
    23K22647
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
シリコン塑性変形技術を用いた高角度分解能で軽量な次世代X線望遠鏡の開発
利用硅塑性变形技术开发下一代高角分辨率轻型X射线望远镜
  • 批准号:
    24K17090
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
脆性材料表面にミクロな塑性変形をもたらすピーニング加工の方法論構築と改質効果解明
开发一种在脆性材料表面引起微观塑性变形的喷丸方法并阐明改性效果
  • 批准号:
    24K00782
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
共晶組織制御によるセラミックスの塑性変形能の向上とその指導原理の構築
通过控制共晶结构提高陶瓷的塑性变形能力并建立其指导原则
  • 批准号:
    24KJ0568
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
塑性変形を与えたPdAu合金膜の水素吸蔵反応機構究明とデバイス応用に関する研究
塑性变形PdAu合金薄膜吸氢反应机理研究及器件应用研究
  • 批准号:
    24K08262
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fe-Mn-Si系制振ダンパー合金における可逆的塑性変形機構の徹底解明
彻底阐明Fe-Mn-Si减振合金的可逆塑性变形机制
  • 批准号:
    23K21048
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
生体らしい形と動き:自発的に塑性変形する曲面の流体構造連成問題
生物形状和运动:自发塑性变形曲面的流固耦合问题
  • 批准号:
    24H00292
  • 财政年份:
    2024
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
微視スケール塑性変形(ナノプラスティシティ)と結晶欠陥との相互作用の原子論的解析
微观塑性变形(纳米塑性)与晶体缺陷之间相互作用的原子分析
  • 批准号:
    23K13215
  • 财政年份:
    2023
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
In-situ観察に基づく超音波振動付加下における塑性変形挙動の理解とその応用
基于原位观测的超声振动塑性变形行为研究及其应用
  • 批准号:
    22K18758
  • 财政年份:
    2022
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
分子吸着による塑性変形挙動の変化を利用した“潤滑”に依存しない切削加工技術の探求
利用分子吸附引起的塑性变形行为的变化,探索不依赖“润滑”的切削技术
  • 批准号:
    22H01376
  • 财政年份:
    2022
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了