Infinitary combinatorics without the axiom of choice
没有选择公理的无穷组合学
基本信息
- 批准号:43598099
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2007
- 资助国家:德国
- 起止时间:2006-12-31 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the presence of the axiom of choice many infinitary combinatorial principles motivated by general model theory or cardinal arithmetic are so strong that their consistency strengths with respect to the standard set theoretic axiom system ZFC cannot be exactly determined by current forcing and core model techniques. Weakening or omitting the choice assumptions can however weaken principles so that their consistency strengths become "tractable" by existing techniques. The research project /Infinitary Combinatorics without the Axiom of Choice/ will carry out detailed consistency studies on a wide spectrum of combinatorial principles without the (full) axiom of choice, including versions of Chang's conjecture, Rowbottom cardinals, accessible partition cardinals, and cardinal arithmetic for singular cardinals. The project is based on an intense collaboration between set theorists at Amsterdam, Bonn, and New York. Support is requested for a Ph.D. position at Bonn to be filled by Ioanna Dimitriou. Dimitriou will also coordinate the compilation and publication of comprehensive lecture notes evolving from this project.
在选择公理的存在下,许多由一般模型论或基数算法驱动的无穷组合原理是如此强大,以至于它们相对于标准集合论公理系统ZFC的一致性强度不能被当前的强迫和核心模型技术准确地确定。然而,弱化或省略选择假设可能会削弱原则,从而使它们的一致性强度通过现有技术变得“容易处理”。研究项目/没有选择公理的无限组合/将对没有(完全)选择公理的广泛的组合原理进行详细的一致性研究,包括张氏猜想的版本、行底基数、可访问的分拆基数和奇数基数的基数算术。该项目是基于阿姆斯特丹、波恩和纽约的集合理论家之间的密切合作。波恩的一个博士职位将由Ioanna Dimitriou填补,请求提供支助。迪米特里欧还将协调编写和出版从该项目演变而来的综合讲稿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Koepke其他文献
Professor Dr. Peter Koepke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Koepke', 18)}}的其他基金
Determinacy, infinitary combinatorics and their interactions
确定性、无限组合及其相互作用
- 批准号:
5402619 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Development and applications of a new Finestructure theory for the constructible hierarchy
新的可构造层次结构精细结构理论的发展与应用
- 批准号:
5231094 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
- 批准号:
2349015 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
- 批准号:
2418414 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
- 批准号:
2415358 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant