Study of Asymptotic Analysis of Systems of Quasilinear Partial Differential Equations

拟线性偏微分方程组渐近分析的研究

基本信息

  • 批准号:
    62460005
  • 负责人:
  • 金额:
    $ 3.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1987
  • 资助国家:
    日本
  • 起止时间:
    1987 至 1989
  • 项目状态:
    已结题

项目摘要

The main purpose of the present study is to clarify effect of concurrence between quasilinearity and hyperboldicity through description of behaviors of asymptotic solutions of systems of quasilinear hyperbolic partial differential equations.In the first place, we developed formal asymptotic theory for weak solutions. We showed that, even for higher dimensional systems of conservation laws, the structure of 1-dimensional conservation law is observed when restricted any particular phase surface. On the other hand, we noticed possibility of extending the notion of simple waves which are basic in the 1-dimensional study.In the second place, we started rigorous asymptotic analysis of strong solutions with small data. Formal solutions can be constructed according to the method similar to the linear case. However, the conventional estimates only assure the same order for the presumed remainder term and the formal expansion. To overcome this difficulty, we are planning to apply a modified hard implicit function theorem which is valid in the Sobolev scale. The full details are yet to be written, and for the moment, several related estimates required for handling nonlinearity in the Sobolev scale are compiled. It is believed that the above mentioned modified implicit function theorem makes sense in the frame of real interpolation spaces.
本文的主要目的是通过描述拟线性双曲型偏微分方程系统的渐近解的性质,阐明拟线性与双曲性合流的影响。首先,我们发展了弱解的形式渐近理论。我们证明了,即使是高维的守恒律系统,当限制任何特定的相表面时,也能观察到一维守恒律的结构。另一方面,我们注意到扩展一维研究中基本的简单波的概念的可能性。其次,我们开始对小数据强解进行严格的渐近分析。形式解可以根据类似于线性情况的方法构造。然而,传统的估计只保证对假定的余数项和形式展开的顺序相同。为了克服这个困难,我们打算应用一个修正的硬隐函数定理,它在Sobolev尺度上是有效的。完整的细节还有待撰写,目前,已经编制了处理索博列夫尺度非线性所需的几个相关估计。证明了上述修正隐函数定理在实插值空间中是有意义的。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
吉川敦: "On expansions of commutators acting in the Sobolev scale" Indiana University Mathematical Journal(投稿中).
Atsushi Yoshikawa:“关于 Sobolev 尺度上的换向器的展开”印第安纳大学数学杂志(进行中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉川敦: "Weak asymptotic solutions to hyperbolic systems of conservation lows" Lecture Notes in Numerical & Applied Analysis. 10. 195-210 (1989)
Atsushi Yoshikawa:“守恒低点双曲系统的弱渐近解”《数值与应用分析》讲义,10. 195-210 (1989)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉川敦: "Weak asymptotic solutions to hyperbolic systems of conservation laws" Lecture Notes in Numerical & Applied Analysis. 10. 195-210 (1989)
Atsushi Yoshikawa:“守恒定律双曲系统的弱渐近解”《数值与应用分析》讲义,10. 195-210 (1989)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉川敦: "An asymptotic theory for weak solutions of quasilinear hyperbolic systems of conservation lows" Archive for Rational Mechanics.
Atsushi Yoshikawa:“守恒低点拟线性双曲系统弱解的渐近理论”理性力学档案。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshikawa, A: "An asymptotic theory for weak solutions of quasilinear hyperbolic systems of conservation laws" Achieve for Rational Mechanics.
Yoshikawa,A:“守恒定律拟线性双曲系统弱解的渐近理论”成就为理性力学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHIKAWA Atsushi其他文献

YOSHIKAWA Atsushi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHIKAWA Atsushi', 18)}}的其他基金

Development of Evaluation and Assessment Method for Practical use of knowledge in learning
开发在学习中实际运用知识的评价和评估方法
  • 批准号:
    23501059
  • 财政年份:
    2011
  • 资助金额:
    $ 3.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SEEKING FURTHER POSSIBILITIES OF MATHEMATICS
寻求数学的更多可能性
  • 批准号:
    08304013
  • 财政年份:
    1996
  • 资助金额:
    $ 3.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Initial value problem of quasi-linear hyperbolic systems and global geometric optics approximation
拟线性双曲系统初值问题与全局几何光学逼近
  • 批准号:
    05452011
  • 财政年份:
    1993
  • 资助金额:
    $ 3.58万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了