Neural Network Model for Voluntary Movement and Application to Robotics

自主运动神经网络模型及其在机器人中的应用

基本信息

  • 批准号:
    62490011
  • 负责人:
  • 金额:
    $ 5.12万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1987
  • 资助国家:
    日本
  • 起止时间:
    1987 至 1989
  • 项目状态:
    已结题

项目摘要

Human motor skills are not innate, but have to be acquired by training from birth. In the beginning, movements are controlled by using feedback signals through visual pathways. With increased skill, the feedback control system is replaced as the main controller by a feedforward control system which means movements can be control led unconsciously. A neural network model which can explain this process is proposed. The model is based on a rule called the feedback-error-learning. The inverse dynamics of the motor system is organized in a three layer neural network according to the back-propagation learning rule.Optimal control of human arm movement is also discussed , and a neural network model which realizes the optimal pathways based on the minimum torque change criterion is proposed. Basic ideas are (1) spatial representation of time, (2) learning of forward dynamics and kinematics model and (3) relaxation computation based on the acquired model. Operations of this network are divided into the learning phase and the pattern-generating phase. In the learning phase, this network acquires a forward model of the multi-degree-of-freedom controlled object while monitoring the actual trajectory as a teaching signal. In the pattern-generating phase, electrical coupling between neurons representing motor commands at neighboring times is activated to guarantee the minimum torque-change criterion. By computer simulation, we show that the model can produce a multi-joint arm trajectory while avoiding obstacles or passing through viapoints.
人类的运动技能不是天生的,而是必须通过与生俱来的训练获得的。最初,运动是通过视觉通路的反馈信号来控制的。随着技能的提高,反馈控制系统被前馈控制系统取代为主控制器,这意味着运动可以在无意识中被控制。提出了一个可以解释这一过程的神经网络模型。该模型基于一个称为反馈错误学习的规则。将电机系统的逆动力学按照反向传播学习规则组织成一个三层神经网络,并讨论了手臂运动的最优控制,提出了一种基于最小转矩变化准则实现最优路径的神经网络模型。基本思想是(1)时间的空间表示,(2)正向动力学和运动学模型的学习和(3)基于所获得的模型的松弛计算。该网络的操作分为学习阶段和模式生成阶段。在学习阶段,该网络获取多自由度被控对象的前向模型,同时监测作为示教信号的实际轨迹。在模式生成阶段,在相邻时间代表电机命令的神经元之间的电耦合被激活,以保证最小的扭矩变化标准。通过计算机仿真,我们表明,该模型可以产生一个多关节的手臂轨迹,同时避免障碍物或通过过境点。

项目成果

期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
中村雅之: "逆ダイナミクス内部モデルを用いた腕の最適軌道生成" 電子情報通信学会技術研究報告 NC89. (1990)
Masayuki Nakamura:“使用逆动力学内部模型生成最佳手臂轨迹”IEICE 技术研究报告 NC89(1990)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoji Uno: "Formation and Control of Optimal Trajectory in Human Multijoint Arm Movement" Biological Cybernetics. 61. 89-101 (1988)
Yoji Uno:“人体多关节手臂运动最优轨迹的形成与控制”生物控制论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mitsuo Kawato: "Trajectory Formation of Arm Movement by Cascade Neural Network Model Based on Minimum Touque-Change Criterion" Biological Cybernetics. 62. 275-288 (1990)
Mitsuo Kawato:“基于最小Touque-Change Criterion的级联神经网络模型形成手臂运动的轨迹”生物控制论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroyuki Miyamoto: "Feedback-Error-Learning Neural Network for Trajectory Control of a Robotic Manipulator" Neural Networks, 1, pp.251-265(1988).
Hiroyuki Miyamoto:“用于机器人操纵器轨迹控制的反馈误差学习神经网络”神经网络,1,第 251-265 页(1988)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
宇野洋二: "随意運動学習ロボット" 電気学会雑誌. 109. 449-452 (1989)
Yoji Uno:“自主运动学习机器人”日本电气工程师学会杂志 109. 449-452 (1989)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUZUKI Ryoji其他文献

SUZUKI Ryoji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUZUKI Ryoji', 18)}}的其他基金

epidermal fatty acid binding protein(FABP) in Peyer's patch: a contribution to intesitnal flora control
派尔氏淋巴结中的表皮脂肪酸结合蛋白(FABP):对肠道菌群控制的贡献
  • 批准号:
    17K09368
  • 财政年份:
    2017
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Epidermal fatty acid binding protein (EFAP/FABP5) expression is associated with differential transcytosis of M cells in C57BL/6 mice Peyer's patch
表皮脂肪酸结合蛋白 (EFAP/FABP5) 表达与 C57BL/6 小鼠派尔氏斑中 M 细胞的差异转胞吞作用相关
  • 批准号:
    22590186
  • 财政年份:
    2010
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ANALYSIS OF GRASPING MOVEMENTS BY HUMAN HAND AND ITS APPLICATION FOR MANIPULATING HAND ROBOT
人手抓取动作分析及其在操控手机器人中的应用
  • 批准号:
    07455176
  • 财政年份:
    1995
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Visual Recognition of Objects and Control of Hand Shaping in Grasping Movements.
物体的视觉识别和抓取动作中手部形状的控制。
  • 批准号:
    03650338
  • 财政年份:
    1991
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Analysis of Excitation Conduction in the Heart and the Reconstruction of Electrocardiogram Using Ionic -channel Models
心脏兴奋传导分析及离子通道模型心电图重建
  • 批准号:
    60490011
  • 财政年份:
    1985
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
  • 批准号:
    2332060
  • 财政年份:
    2024
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Continuing Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
  • 批准号:
    23K11120
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
  • 批准号:
    23K10454
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
  • 批准号:
    23H03451
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了