ANALYSIS OF GRASPING MOVEMENTS BY HUMAN HAND AND ITS APPLICATION FOR MANIPULATING HAND ROBOT

人手抓取动作分析及其在操控手机器人中的应用

基本信息

  • 批准号:
    07455176
  • 负责人:
  • 金额:
    $ 4.48万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

Mechanisms of integration of visual and motor informetion and generating control signals for grasping movemetnts by human hands were investigated in the following three aspects.1. Effects of visual information on grasping performance.(1) Effects of visual blur on reaching time were investigated by using of image editting system which can show subjects virtual 3-dimensional objects. The results showed that the increase of blur extends reaching time.(2) Effects of condition of object on grasping performance were investigated. Empty cup, cup filled with water and cup with water and cap were used as grasping object. The results showed visually recognized conition of object has significant effects on reaching trajectories and time.2. Generalization ability of hour glass type neural network as a model of grasping mechanisms.Modified hour glass type neural network model were used for integrating visula and motor information and generating control signal in grasping. The neural network are selforganized in learning phase and can generate the suitable hand shapes for grasping objects by using a relaxation computation. As learning objects, we used not only convex object such as cylinder, square pillar, ball, but concave object such as handle, gourd. Rather good ability of generalization was shown by using of an ellipsoid as a test object.3. Neural network model which learns forwad dynamics of grasping movements. Three layred neural network model was used. Subjects are asked to grasp 5 sizes of object firmly. For each trial, 4 channel electromyograms from upper arm and 2 joint angles of thumb and index finger respectively are measured as well as grasping force. They are used in learning phase and other sets of EMG.joint angles and grasping force are used as test data. Learning was succesful and showed the possibility of estimating grasping force and finger joint torques during grasping.
本文从以下三个方面研究了视觉和运动信息的整合机制以及人手抓取动作控制信号的产生机制.视觉信息对抓取绩效的影响。(1)利用图像编辑系统,研究了视觉模糊对到达时间的影响。结果表明,模糊度的增加延长了到达时间。(2)研究了物体的状态对抓取绩效的影响。以空杯、盛水杯、盛水杯和杯盖作为抓取对象。实验结果表明,视觉识别的目标概念对到达轨迹和到达时间有显著影响.沙漏型神经网络作为抓取机构模型的泛化能力,采用改进的沙漏型神经网络模型集成视觉和运动信息,产生抓取控制信号。神经网络在学习阶段是自组织的,通过松弛计算可以生成适合抓取物体的手形。作为学习对象,我们不仅使用了圆柱体、方柱、球等凸形物体,还使用了手柄、葫芦等凹形物体。以椭球体为测试对象,显示出较好的泛化能力.学习抓取动作前向动力学的神经网络模型。采用三层神经网络模型。要求受试者牢牢抓住5个大小的物体。每次测试分别测量上臂4道肌电和拇指、食指2个关节角肌电以及抓握力。它们被用于学习阶段和其他组肌电信号。关节角度和抓握力被用作测试数据。学习是成功的,并显示了在把握力和手指关节扭矩估计的可能性。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
福村直博: "対象物体の形状に合わせて手の形を決定する神経回路モデル" システム制御情報学会論文誌. 8. 408-417 (1995)
Naohiro Fukumura:“根据目标物体的形状确定手的形状的神经电路模型”《系统、控制和信息工程师学会汇刊》8. 408-417 (1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
福村直博: "対象物の形状に合わせて手の形を決定する神経回路モデル" システム制御情報学会論文誌. 8. 408-417 (1995)
Naohiro Fukumura:“根据物体形状确定手部形状的神经电路模型”,系统、控制和信息工程师学会汇刊,8. 408-417 (1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Dornay: "Minimum Muscle-Tension Change Trajectories Predicted by Using a 17-Muscle Model of the Monkey's Arm." J.Motor Behavior. 28-2. 83-100 (1996)
M.Dornay:“使用猴臂 17 块肌肉模型预测最小肌肉张力变化轨迹。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
島田洋一: "把持動作における順ダイナミクスモデルの学習" 電子情報通信学会研究会技術資料. MBE97(印刷中). (1997)
Yoichi Shimada:“学习抓取运动的前向动力学模型”IEICE MBE97(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Fukumura: "A Neural Network Models that Designs Hand Shapes to Grasp Objects" J.Society of System, Control, Information. 8-8. 408-417 (1995)
N.Fukumura:“设计手部形状以抓取物体的神经网络模型”J.Society of System, Control, Information。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUZUKI Ryoji其他文献

SUZUKI Ryoji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUZUKI Ryoji', 18)}}的其他基金

epidermal fatty acid binding protein(FABP) in Peyer's patch: a contribution to intesitnal flora control
派尔氏淋巴结中的表皮脂肪酸结合蛋白(FABP):对肠道菌群控制的贡献
  • 批准号:
    17K09368
  • 财政年份:
    2017
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Epidermal fatty acid binding protein (EFAP/FABP5) expression is associated with differential transcytosis of M cells in C57BL/6 mice Peyer's patch
表皮脂肪酸结合蛋白 (EFAP/FABP5) 表达与 C57BL/6 小鼠派尔氏斑中 M 细胞的差异转胞吞作用相关
  • 批准号:
    22590186
  • 财政年份:
    2010
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visual Recognition of Objects and Control of Hand Shaping in Grasping Movements.
物体的视觉识别和抓取动作中手部形状的控制。
  • 批准号:
    03650338
  • 财政年份:
    1991
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Neural Network Model for Voluntary Movement and Application to Robotics
自主运动神经网络模型及其在机器人中的应用
  • 批准号:
    62490011
  • 财政年份:
    1987
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Analysis of Excitation Conduction in the Heart and the Reconstruction of Electrocardiogram Using Ionic -channel Models
心脏兴奋传导分析及离子通道模型心电图重建
  • 批准号:
    60490011
  • 财政年份:
    1985
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

拘束条件の自己形成・実時間選択による感覚運動情報統合モデルと移動ロボットへの応用
基于自形成和实时选择约束的感觉运动信息集成模型及其在移动机器人中的应用
  • 批准号:
    16760337
  • 财政年份:
    2004
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了