On Kazhdan's property (T) and completeness of automorphism groups of Coxeter groups
关于Coxeter群自同构群的Kazhdan性质(T)和完备性
基本信息
- 批准号:438625854
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is located in the area of geometric group theory. The basic principle of geometric group theory is to investigate algebraic properties of groups using geometric and topological methods. In this project I focus on groups which are defined via edge-labeled graphs, Coxeter groups, and their automorphism groups. One important property of a group is property (T). It was defined by Kazhdan for locally compact groups in terms of unitary representations. This property was reformulated in many different mathematical areas, in particular in geometric group theory. The first goal of this project is to show that the automorphism group of an infinite Coxeter group $Aut(W_\Gamma)$ does not have property (T) and give algebraic reasons that prohibit this group from having property (T). Many of the groups in geometric group theory are rigid, in the sense that their outer automorphism groups are finite. The second goal of this project is to characterize those automorphism groups of Coxeter groups in terms of $\Gamma$ which are complete (i.e. $Aut(Aut(W_\Gamma))=Inn(Aut(W_\Gamma)))$. Along the way I plan to investigate further properties of the automorphism group of a Coxeter group.
该项目位于几何群论领域。几何群论的基本原理是用几何和拓扑的方法研究群的代数性质。在这个项目中,我专注于通过边标记图,Coxeter群和它们的自同构群定义的群。群的一个重要性质是性质(T)。它是由Kazhdan定义的局部紧群的酉表示。这个性质在许多不同的数学领域被重新表述,特别是在几何群论中。本项目的第一个目标是证明无限Coxeter群$Aut(W_\Gamma)$的自同构群不具有性质(T),并给出禁止此群具有性质(T)的代数理由。几何群论中的许多群是刚性的,在这个意义上,它们的外自同构群是有限的。本项目的第二个目标是用$\Gamma$刻画Coxeter群的自同构群,即$Aut(Aut(W_\Gamma))=Inn(Aut(W_\Gamma))$。沿着的方式,我计划进一步研究的性质的自同构群的考克斯特群。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Olga Varghese其他文献
Dr. Olga Varghese的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
压缩感知理论中满足可重构条件的测量矩阵研究
- 批准号:61002024
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
一类具有近红外光电功能材料的合成及性能研究
- 批准号:20472014
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
虹膜生物力学特性及临床应用
- 批准号:10472005
- 批准年份:2004
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
- 批准号:
2338951 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Thermophysical Property Analysers for Materials under Extreme Environments
极端环境下材料热物性分析仪
- 批准号:
LE240100130 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Mapping the Frontiers of Private Property in Australia
绘制澳大利亚私有财产的边界
- 批准号:
DP240100395 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
ICF Mechanical Property Optimisation of Magnesium Alloy Wires for Bioresorbable Vascular Scaffolds for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物可吸收血管支架镁合金丝的 ICF 机械性能优化
- 批准号:
MR/Z503897/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
- 批准号:
2340664 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Multifunctional High Entropy Carbide and Boride (HECARBO) Ceramic Composites: Compositional Space, Novel Synthesis, and Property Tailoring
多功能高熵碳化物和硼化物 (HECARBO) 陶瓷复合材料:成分空间、新颖合成和性能定制
- 批准号:
EP/Y020804/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Coating network and barrier property design strategies, for protection against hydrogen embrittlement
涂层网络和阻隔性能设计策略,以防止氢脆
- 批准号:
2902353 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




