Outdoor World Modeling by Intelligent Integration of Multi-Visual Information

多视觉信息智能融合户外世界建模

基本信息

  • 批准号:
    03805029
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1992
  • 项目状态:
    已结题

项目摘要

In this project, we proposed a method of scene interpretation which dynamically integrates multi-visual sensory data such as intensity and range images into the scene descriptions according to the intermediate results of the sensory data processings that are obtained by using the knowledge of objects in the scene and the properties of the individual sensory data. In the first year, we found that geometric modeling of one object class by using multi-visual information was useful for extraction of the objects in this class and for reasoning of spatial relationships between objects in the scene. This year, we extended our method so that it could be applicable to various kindsof object classes. That is, we developed a model-driven spatial reasoning system which extracted various kinds of objects from the background and determined the geometric structures of these objects and unexplored regions as well. Research results are as follows:(1) In the case of stereo-color images, the range data obtained from a feature based stereo matching method are sparse, therefore they are not sufficient for segmentation of the scene. Then, we utilized the result of region segmentation by using the color information which was useful to recover the scene structure in terms of planar patches extracted in the disparity space. As a result, the scene structure was roughly recovered, but more accurate range information is needed to determine the details of the scene structure.(2) In the case of a pair of dense range data and an intensity image, we determined the parameters of the parametric model from the uncertainties of planar patches estimated from the range data. It has been shown that the uncertainty depends on two kinds of error sources: probable and systematic errors. We revealed their relationships and applied it to the problem of object recognition.
在这个项目中,我们提出了一种场景解释的方法,它动态地集成多视觉传感器数据,如强度和范围图像到场景描述中,根据传感器数据处理的中间结果,通过使用场景中的对象的知识和个人的感觉数据的属性获得。在第一年中,我们发现,几何建模的一个对象类,通过使用多视觉信息是有用的提取对象在这一类和推理的空间关系的对象在场景中。今年,我们扩展了我们的方法,使其可以适用于各种对象类。也就是说,我们开发了一个模型驱动的空间推理系统,从背景中提取各种对象,并确定这些对象的几何结构和未探索的区域以及。研究结果如下:(1)对于立体彩色图像,基于特征的立体匹配方法得到的距离数据是稀疏的,不足以进行场景分割。然后,我们利用区域分割的结果,通过使用的颜色信息,这是有用的恢复场景结构的平面补丁在视差空间中提取。结果,粗略地恢复了场景结构,但是需要更精确的范围信息来确定场景结构的细节。(2)在一对密集的距离数据和强度图像的情况下,我们确定的参数模型的参数从距离数据估计的平面补丁的不确定性。结果表明,不确定度取决于两种误差源:概然误差和系统误差。我们揭示了它们之间的关系,并将其应用于物体识别问题。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y. Taniguchi, M. Asada, and Y. Shirai: "Scene segmentation on based on object model using multi-sensory information" Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 1214-1222 (1992)
Y. Taniguchi、M. Asada 和 Y. Shirai:“基于使用多感官信息的对象模型的场景分割”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Asada,M.Kimura,Y.Taniguchi and Y.Shirai,: "“Dyanmic integration of height maps into a 3-D world representation from range image sequences,"" Int.Journal of Computer Vision,. 9. 31-53 (1992)
M.Asada、M.Kimura、Y.Taniguchi 和 Y.Shirai,“将高度图动态集成到距离图像序列的 3D 世界表示中”,Int.Journal of Computer Vision,9. 31- 53 (1992)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Taniguchi,M.Asada,and Y.Shirai,: "“Scene segmentation on based on object model using multisensory information,"" Proc.of IEEE/RSJ Int.Conf.on Intellegent Robots and Systems,. 1214-1222 (1992)
Y.Taniguchi、M.Asada 和 Y.Shirai,““基于使用多感官信息的对象模型的场景分割”,”Proc. of IEEE/RSJ Int.Conf.on Intellegent Robots and Systems,. 1214-1222 ( 1992)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Taniguchi: "“World model representation based on planar patch from video and range images"" Proc.of IEEE/RSJ Int.Workshop on Intelligent Rrobots and systems '91. 409-414 (1991)
Y.Taniguchi:“基于视频和范围图像的平面补丁的世界模型表示”Proc.of IEEE/RSJ Int.Workshop on 智能机器人和系统 91 (1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Taniguchi: "“Scene segmentation based on object model using multiーsensory information"" Proc.of IEEE/RSJ Int.Workshop on Intelligent Rrobots and Systems '92. (1992)
Y.Taniguchi:““使用多感官信息的基于对象模型的场景分割””Proc.of IEEE/RSJ Int.Workshop on 智能机器人和系统 92 (1992)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ASADA Minoru其他文献

ASADA Minoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ASADA Minoru', 18)}}的其他基金

Constructive Developmental Science Based on Understanding the Process from Neuro-Dynamics to Social Interaction
基于理解从神经动力学到社会互动过程的建设性发展科学
  • 批准号:
    24000012
  • 财政年份:
    2012
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
Brap gene can be one of causal genes of the Ras-MAPK syndromes.
Brap基因可能是Ras-MAPK综合征的致病基因之一。
  • 批准号:
    22591141
  • 财政年份:
    2010
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Targeting the brap2, a candidate gene for ataxia caused by developmental defects of the cerebellum
针对小脑发育缺陷引起的共济失调的候选基因 brap2
  • 批准号:
    19591014
  • 财政年份:
    2007
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cooperation and competitive learning of multi-humanoid based on mapping other's behavior on the self behavior space
基于将他人行为映射到自我行为空间的多类人协作与竞争学习
  • 批准号:
    16200012
  • 财政年份:
    2004
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
ロボカップを用いたマルチロボット環境における学習・発達・進化手法の共同開発
使用 RoboCup 联合开发多机器人环境中的学习、开发和进化方法
  • 批准号:
    11694155
  • 财政年份:
    1999
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Coordination of Multiple Behaviors for Competition Robots by Vision-Based Reinforcement Learning
基于视觉的强化学习协调竞赛机器人的多种行为
  • 批准号:
    07455112
  • 财政年份:
    1995
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Improvement of range image measurement by fusion of multiple modalities
通过多模态融合改进距离图像测量
  • 批准号:
    19H04191
  • 财政年份:
    2019
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A spatio-chromatic colour appearance model for retargeting high dynamic range image appearance across viewing conditions
空间彩色颜色外观模型,用于在不同观看条件下重新定位高动态范围图像外观
  • 批准号:
    EP/P007503/1
  • 财政年份:
    2017
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Research Grant
A Spatio-chromatic colour appearance model for retargeting high dynamic range image appearance across viewing conditions
空间彩色颜色外观模型,用于在观看条件下重新定位高动态范围图像外观
  • 批准号:
    EP/P007910/1
  • 财政年份:
    2017
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Research Grant
A spatio-chromatic colour appearance model for retargeting high dynamic range image appearance across viewing conditions
空间彩色颜色外观模型,用于在不同观看条件下重新定位高动态范围图像外观
  • 批准号:
    EP/P007600/1
  • 财政年份:
    2017
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Research Grant
A spatio-chromatic colour appearance model for retargeting high dynamic range image appearance across viewing conditions
空间彩色颜色外观模型,用于在不同观看条件下重新定位高动态范围图像外观
  • 批准号:
    EP/P007902/1
  • 财政年份:
    2017
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Research Grant
Development of High-range-resolution Time-of-Flight range Image Sensors
高分辨率飞行时间范围图像传感器的开发
  • 批准号:
    15H05524
  • 财政年份:
    2015
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Construction of fast and compact range image sensors using multiple laser lights and their applications
使用多个激光灯构建快速紧凑范围图像传感器及其应用
  • 批准号:
    26330205
  • 财政年份:
    2014
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of a fast and compact range image sensor that can be used in outdoor environments and its application to 3D modeling of environments
构建可用于室外环境的快速、紧凑型图像传感器及其在环境 3D 建模中的应用
  • 批准号:
    20500164
  • 财政年份:
    2008
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of old manuscript image analysis and classification based on high dynamic range image processing
基于高动态范围图像处理的旧手稿图像分析与分类研究
  • 批准号:
    19500218
  • 财政年份:
    2007
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Direct Range Image Processing (DRIP)
直接范围图像处理 (DRIP)
  • 批准号:
    EP/C006283/1
  • 财政年份:
    2006
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了