Theory of Estimation-of-Distribution Algorithms (TEDA)
分布算法估计理论(TEDA)
基本信息
- 批准号:440936840
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large optimization problems are regularly not efficiently solvable by standard optimization techniques, as the objective function is only indirectly accessible. In such black-box optimization settings, heuristics are commonly applied. Popular approaches are general-purpose optimizers inspired by nature, such as evolutionary computation. There are two cardinal representations of the evolutionary search status: multisets of solutions evolved via mutation, crossover, and selection; and probabilistic models that learn from samples. This corresponds to the frameworks of evolutionary algorithms (EAs) and estimation-of-distribution algorithms (EDAs), respectively. While EAs have been studied theoretically for more than three decades, the theoretical analysis of EDAs only gained momentum recently.Our aim is to advance the rigorous understanding of EDAs. In particular, we want to reduce the gap between the theoretical results of EAs and EDAs, providing a more complete picture of the capabilities of evolutionary computation in general. While EAs and EDAs are structurally different, their optimization efficiencies are surprisingly correlated. Nonetheless, both approaches have their individual advantages, which we want to uncover.The first step of this scientific endeavor will be the development of new stochastic tools that are more suited for the analysis of EDAs, as most of the current tools were developed with EAs in mind. In particular, we plan to provide new drift theorems for situations that are common for EDAs but rarely occur in EAs. The newly developed tools will help tackle classes of EDAs that have not been theoretically analyzed before. We further plan to analyze EDAs in settings where they may be better suited than EAs. An example for such scenarios are noisy environments, where this has been observed empirically but not understood mathematically. In addition to that, EDAs have only scarcely been considered in settings with multiple local optima. Given their more global view on the search space, we believe that EDAs can bypass local optima more efficiently than EAs. Finally, the project should give sufficient insights into EDAs such that we can create new hybrid algorithms combining the advantages of both EAs and EDAs.
大型优化问题通常不能通过标准优化技术有效地解决,因为目标函数只能间接访问。在这种黑盒优化设置中,启发式通常被应用。流行的方法是受自然启发的通用优化器,例如进化计算。进化搜索状态有两种主要表现形式:通过突变、交叉和选择进化出的多组解决方案;以及从样本中学习的概率模型。这分别对应于进化算法(EAs)和分布估计算法(EDAs)的框架。虽然对电子辐射的理论研究已经有三十多年了,但对电子辐射的理论分析最近才有了发展势头。我们的目标是促进对eda的严格理解。特别是,我们希望减少ea和eda的理论结果之间的差距,提供一个更完整的进化计算能力的总体图景。虽然ea和eda在结构上不同,但它们的优化效率却惊人地相关。尽管如此,这两种方法都有各自的优势,这是我们想要揭示的。这一科学努力的第一步将是开发新的更适合分析eda的随机工具,因为目前大多数工具都是在考虑到eda的情况下开发的。特别是,我们计划为eda常见但在ea中很少发生的情况提供新的漂移定理。新开发的工具将有助于解决以前没有进行理论分析的eda类问题。我们进一步计划在可能比ea更适合的环境中分析eda。这种情况的一个例子是嘈杂的环境,这是经验观察到的,但没有数学上的理解。除此之外,eda几乎只在具有多个局部最优的设置中被考虑过。考虑到eda对搜索空间的全局视角,我们相信eda可以比ea更有效地绕过局部最优。最后,该项目应该对eda提供足够的见解,以便我们可以创建结合ea和eda优势的新的混合算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Tobias Friedrich, Ph.D.其他文献
Professor Dr. Tobias Friedrich, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Tobias Friedrich, Ph.D.', 18)}}的其他基金
Theory of Swarm Algorithms and Their Effectiveness in Uncertain Environments (TOSU)
群体算法理论及其在不确定环境中的有效性(TOSU)
- 批准号:
247100267 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Analysis of Discrete Load Balancing on Heterogeneous Networks (ADLON)
异构网络上的离散负载均衡分析(ADLON)
- 批准号:
223438688 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Average-Case Analysis of Parameterized Problems and Algorithms
参数化问题和算法的平均情况分析
- 批准号:
213251566 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Geometric Selfish Network Creation (GEONET)
几何自私网络创建(GEONET)
- 批准号:
442003138 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
- 批准号:
2313768 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Exploration of periglacial landforms and subsurface structures of terrestrial analog sites for estimation of subsurface ice distribution on Mars
探索陆地模拟地点的冰缘地貌和地下结构,以估计火星上地下冰的分布
- 批准号:
23H01232 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bayesian estimation of soil layer parameters and immediate prediction of spatial distribution of hit probability in debris flow simulation
泥石流模拟中土层参数的贝叶斯估计及撞击概率空间分布的即时预测
- 批准号:
23K13412 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of comprehensive estimation method of lightning risk of medium-voltage power distribution line
中压配电线路雷电风险综合评估方法开发
- 批准号:
23K03815 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
- 批准号:
2313767 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229074 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Estimation of Multivariate Distribution for Time Series Data
时间序列数据多元分布的估计
- 批准号:
23K18807 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of tree and log strength estimation model: Optimizing wood distribution based on strength information
树木和原木强度估计模型的开发:根据强度信息优化木材分布
- 批准号:
23K05470 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229073 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229075 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant