The Hyperbolic Geometry of Networks

网络的双曲几何

基本信息

项目摘要

Network science is driven by the question which properties large real-world networks have and how we can exploit them algorithmically. Hyperbolic geometry, with its unexpected connection to complex networks, has proven to be a useful tool in this regard. This connection works in both directions:Hyperbolic geometry forms the basis of a natural and explanatory model for real-world networks. Hyperbolic random graphs are obtained by choosing random points in the hyperbolic plane and connecting pairs of points that are geometrically close. The resulting networks share many structural properties with large real-world networks. They are thus well suited for algorithmic analyses in a more realistic setting.In the other direction, starting with a real-world network, hyperbolic geometry is well-suited for metric embeddings. The vertices of a network can be mapped to points in this geometry, such that geometric distances are similar to graph distances. Such embeddings have a variety of algorithmic applications ranging from approximations based on efficient geometric algorithms to greedy routing solely using hyperbolic coordinates for navigation decisions.Our goal is to better understand the relationship between large real-world networks and hyperbolic geometry. To cover both directions of this connection, we want to study properties of hyperbolic random graphs as well as embeddings of real-world networks into hyperbolic space. Moreover, we want to exploit these structural insights by developing algorithms that perform provably well on hyperbolic random graphs and, in turn, empirically well on real-world networks.
网络科学的驱动力是大型现实世界网络具有哪些属性以及我们如何通过算法来利用它们。双曲几何与复杂网络有着意想不到的联系,已被证明是这方面的有用工具。 This connection works in both directions:Hyperbolic geometry forms the basis of a natural and explanatory model for real-world networks.双曲随机图是通过在双曲平面中选择随机点并连接几何上接近的点对来获得的。由此产生的网络与大型现实世界网络共享许多结构属性。因此,它们非常适合在更现实的环境中进行算法分析。另一方面,从现实世界的网络开始,双曲几何非常适合度量嵌入。网络的顶点可以映射到该几何中的点,使得几何距离类似于图距离。这种嵌入具有多种算法应用,从基于高效几何算法的近似到仅使用双曲坐标进行导航决策的贪婪路由。我们的目标是更好地理解大型现实世界网络和双曲几何之间的关系。为了涵盖这种连接的两个方向,我们想要研究双曲随机图的属性以及现实世界网络到双曲空间的嵌入。此外,我们希望通过开发在双曲随机图上表现良好的算法来利用这些结构见解,进而在现实世界网络上根据经验表现良好。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Tobias Friedrich, Ph.D.其他文献

Professor Dr. Tobias Friedrich, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Tobias Friedrich, Ph.D.', 18)}}的其他基金

Scale-Free Satisfiability
无标度满意度
  • 批准号:
    416061626
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theory of Swarm Algorithms and Their Effectiveness in Uncertain Environments (TOSU)
群体算法理论及其在不确定环境中的有效性(TOSU)
  • 批准号:
    247100267
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Analysis of Discrete Load Balancing on Heterogeneous Networks (ADLON)
异构网络上的离散负载均衡分析(ADLON)
  • 批准号:
    223438688
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Average-Case Analysis of Parameterized Problems and Algorithms
参数化问题和算法的平均情况分析
  • 批准号:
    213251566
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Formation of Realistic Networks
现实网络的形成
  • 批准号:
    438572330
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Geometric Selfish Network Creation (GEONET)
几何自私网络创建(GEONET)
  • 批准号:
    442003138
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theory of Estimation-of-Distribution Algorithms (TEDA)
分布算法估计理论(TEDA)
  • 批准号:
    440936840
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Rethinking Dynamic Wireless Networks through the Lens of Riemannian Geometry
职业:通过黎曼几何的视角重新思考动态无线网络
  • 批准号:
    2144297
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
EAGER:Using Network Analysis And Representational Geometry To Learn Structure-Function Relationship In Neural Networks
EAGER:使用网络分析和表征几何来学习神经网络中的结构-功能关系
  • 批准号:
    2039741
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Identifiability and Inference for Phylogenetic Networks using Applied Algebraic Geometry
职业:使用应用代数几何进行系统发育网络的可识别性和推理
  • 批准号:
    1945584
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of automated methods for generating chemical reaction networks based on phase space geometry
基于相空间几何生成化学反应网络的自动化方法的开发
  • 批准号:
    20K15224
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
  • 批准号:
    2002272
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Analysis of Nonlinear Geometry of Nonstationary Stochastic Models of Deep Neural Networks
深度神经网络非平稳随机模型的非线性几何建模与分析
  • 批准号:
    19H04163
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了