AN ENERGY METHOD ANALYSIS OF CLOSED-DIE FORGING BEING FILLED WITH RIGID-PLASTIC BILLET IN THREE-DIMENSIONS CONDITION
三维状态下硬塑坯料闭式模锻件的能量法分析
基本信息
- 批准号:04650631
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of realistic admissible velocity field for analysis of three dimensions compression in the die. The velocity field is derived from displacement functions written in the form of trigonometric series.The coefficients of terms in the series defining the velocity field are obtained from considerations of volume of constancy, boundary condition on the wall of Die and minimization of energy function. Analysis defines the velocity in three dimensions Cartesian and Ax-symmetric can be drawn arbitrary. Friction is identified by a friction factor m.The constrain condition of the wall of Die are introduce by two methods. One is that the number of coefficients are decided by the number of contact points. Other is that weighted the volume of billet is forced out the die, added energy function and after energy function minimize.The calculated, introduced constrain condition by the former method. and experiment results of relation between deformation load. filling billet profile and distortion of grid are shown and compared on the plane strain condition.On Ax-symmetric problems, the calculated results of relation between deformation load, distortion of grid and reduction of height for calculated unmber of terms. The load and distorted profiles are compared to calculated and experiment one.The calculated on plain and three dimensions problems, introduced constrain condition by the later method, and experiment results of the loads and distorted profiles are compared.
利用真实的允许速度场分析了模具内的三维压缩。速度场由三角级数形式的位移函数导出,定义速度场的级数中的项系数是从恒定体积、模壁边界条件和能量函数最小化的考虑而得到的。分析定义了速度在三维笛卡尔和轴对称下可以任意绘制。摩擦用摩擦系数m来表示,用两种方法介绍了模具壁面的约束条件。一种是系数的数量由接触点的数量决定。另一种是加权后的方坯体积被挤出模具,加入能量函数,经过能量函数极小化,由前者计算、引入约束条件。以及变形载荷之间关系的实验结果。在平面应变条件下,给出了铸坯充型和网格变形情况,并对轴对称问题,给出了变形载荷、网格变形和高度降低之间关系的计算结果。将荷载和变形剖面与计算和试验结果进行了比较,对平面问题和三维问题进行了计算,引入了约束条件,并对载荷和变形剖面的试验结果进行了比较。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
和田 知之.: "Deformation Analysis by Energy Method using Series Velocity Field." Advances in Engineering Plasticity and It's Application. 949-956 (1993)
Tomoyuki Wada.:“使用级数速度场的能量法变形分析。工程塑性及其应用的进展”949-956 (1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
和田 知之・平山 俊雄: "エネルギ法による2平面工具による円柱圧縮変形解析" 第43回塑性加工連合講演会講演論文集. 1. 273-276 (1992)
Tomoyuki Wada 和 Toshio Hirayama:“使用能量法使用两平面工具分析圆柱压缩变形”第 43 届联合塑料加工会议论文集 1. 273-276 (1992)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tomoyuki Wada: "Deformation Analysis by Energy Method using Series Velocity Field.(Advances in Engineering Plasticity and Lts Applications)" Elsevior, 8 (1993)
Tomoyuki Wada:“使用级数速度场通过能量法进行变形分析。(工程塑性和 Lts 应用的进展)” Elsevior,8 (1993)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tomoyuki Wada: "Deformation analysis by energy method using series velocity field" Advanced in engineering plasticity and its applications. 949-956 (1992)
Tomoyuki Wada:“使用级数速度场的能量法变形分析”在工程塑性及其应用方面取得了进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
WADA TOMOYUKI: "Deformation Analysis by Energy Method Using Series Velocity field." Advances in Engineering Plasticity and Its Application.(1992)
WADA TOMOYUKI:“使用级数速度场的能量法变形分析。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WADA Tomoyuki其他文献
WADA Tomoyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WADA Tomoyuki', 18)}}的其他基金
Eigenvalues of Cartan matrices and Morita equivalences of blocks in finite groups
有限群中块的嘉当矩阵特征值和森田等价
- 批准号:
21540009 - 财政年份:2009
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on eigenvalues and elementary divisors of Cartan matrices in finite groups
有限群嘉当矩阵的特征值和初等因数研究
- 批准号:
17540014 - 财政年份:2005
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rationality of elgenvalues of Cartan matrices in finite groups
有限群中Cartan矩阵的elgen值的有理性
- 批准号:
14540012 - 财政年份:2002
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A STUDY OF THE CARTAN MATRICES OF FINITE GROUPS
有限群嘉当矩阵的研究
- 批准号:
09640015 - 财政年份:1997
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)