Eigenvalues of Cartan matrices and Morita equivalences of blocks in finite groups
有限群中块的嘉当矩阵特征值和森田等价
基本信息
- 批准号:21540009
- 负责人:
- 金额:$ 2.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2009
- 资助国家:日本
- 起止时间:2009 至 2011
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let G be a finite group and H be a normal subgroup of G with p'-index. Let B be a p-block of G and b be any p-block of H covered by B. Then in Theorem 1. 1 of the work of Okuyama-Wada[ Okuyama-Wada, Contemp. Math., 524, 2010], we have proved that the largest eigenvalues of B and b are equal. Furthermore, we have proved that if B satisfies a certain condition(#) on the degrees of irreducible Brauer characters in B, then there exists an eigenvalueλof B such that the(π)-part ofλis equal to the order of defect group D of B. Any p-block of p-solvable group satisfies(#), but it does not hold in general. There exist counter examples for p> 3, however we could not find a counter example for p=2. How is a 2-block of the symmetric group? Calculating the degrees of irreducible Brauer characters, any 2-block of the symmetric group seems to satisfy(#). Furthermore, Kiyota, Okuyama and Wada have recently proved a stronger result than(#) that any 2-block of the symmetric group of arbitrary degree has a unique irreducible Brauer character of height 0[ Kiyota-Okuyama-Wada, accepted]. This generalizes the theorem of Fong, James that the degree of every non-trivial irreducible 2-Brauer characters of the symmetric group is even. This theorem has never been known. We could not discover this remarkable fact if we would not consider eigenvalues of the Cartan matrices of finite groups.
设G是有限群,H是G的p‘-指标正规子群。设B是G的p-块,b是B所覆盖的H的任意p-块,则在Okuyama-Wada[Okuyama-Wada]的定理1.1中。数学,524,2010],我们证明了B和b的最大本征值相等。此外,我们还证明了如果B满足B的不可约特征标次的某个条件(#),则存在B的一个本征值λ,使得π的(λ)-部分等于B的亏群D的阶。p-可解群的任何p-块都满足(#),但一般不成立。存在p>;3的反例,但是我们找不到p=2的反例。对称群的2-块是怎样的?计算不可约Brauer特征标的次数,对称群的任何2-块似乎满足(#)。此外,Kiyota,Okuyama和Wada最近证明了一个比(#)更强的结果,即任意次对称群的任何2-块都有唯一的高度为0的不可约Brauer特征标[Kiyota-Okuyama-Wada,Accept]。这推广了Fong,James关于对称群的每个非平凡不可约2-Brauer特征标的次数为偶数的定理。这个定理从来不为人所知。如果我们不考虑有限群的Cartan矩阵的特征值,我们就无法发现这一显着的事实。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Eigenvalues of Cartan matrices of finite groups
有限群嘉当矩阵的特征值
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Mitsuishi Ayato and Yamaguchi;Takao;Masaaki Umehara and Kotaro Yamada;和田倶幸
- 通讯作者:和田倶幸
On saturated fusion systems and Brauerindecomposability of Scott modules
关于饱和融合系统和 Scott 模的 Braue 可分解性
- DOI:10.1016/j.jalgebra.2011.04.029
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:R.Kessar;N. Kunugi;N.Mitsuhashi
- 通讯作者:N.Mitsuhashi
Blocks with nonabelian defect groups which have cyclic subgroups of index
具有非阿贝尔缺陷群且具有索引循环子群的块
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:M. Holloway;S. Koshitani;N. Kunugi
- 通讯作者:N. Kunugi
Fusion systemとスコット加群のBrauer直既約性
融合系统和斯科特模的布劳尔不可约性
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Shigeo Koshitani;Naoko Kunugi;A. Hanaki;飛田明彦;花木章秀;飛田明彦;花木章秀;脇克志;脇克志;飛田明彦;飛田明彦;功刀直子;功刀直子
- 通讯作者:功刀直子
On selfinjective Artin algebras having generalized standard quasitubes
关于具有广义标准拟管的自射Artin代数
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Maciej Karpicz;Andrzej Skowro. ski;Kunio Yamagata
- 通讯作者:Kunio Yamagata
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WADA Tomoyuki其他文献
WADA Tomoyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WADA Tomoyuki', 18)}}的其他基金
Study on eigenvalues and elementary divisors of Cartan matrices in finite groups
有限群嘉当矩阵的特征值和初等因数研究
- 批准号:
17540014 - 财政年份:2005
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rationality of elgenvalues of Cartan matrices in finite groups
有限群中Cartan矩阵的elgen值的有理性
- 批准号:
14540012 - 财政年份:2002
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A STUDY OF THE CARTAN MATRICES OF FINITE GROUPS
有限群嘉当矩阵的研究
- 批准号:
09640015 - 财政年份:1997
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AN ENERGY METHOD ANALYSIS OF CLOSED-DIE FORGING BEING FILLED WITH RIGID-PLASTIC BILLET IN THREE-DIMENSIONS CONDITION
三维状态下硬塑坯料闭式模锻件的能量法分析
- 批准号:
04650631 - 财政年份:1992
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
- 批准号:
2308152 - 财政年份:2023
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
- 批准号:
RGPIN-2019-03984 - 财政年份:2022
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual
対称群の正規化指標と関連するランダムヤング図形, ランダム行列の研究
对称群归一化指标及相关随机Young图和随机矩阵的研究
- 批准号:
22K03233 - 财政年份:2022
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
対称群周辺とスピン表現にまつわる代数的組合せ論
关于对称群环境和自旋表示的代数组合
- 批准号:
22K03260 - 财政年份:2022
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
- 批准号:
RGPIN-2019-03984 - 财政年份:2021
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
- 批准号:
RGPIN-2019-03984 - 财政年份:2020
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
- 批准号:
RGPIN-2019-03984 - 财政年份:2019
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual
NONLINEAR DYNAMICS OF BLUFF-BODY WAKES AND FLUID-STRUCTURE INSTABILITIES: A SYMMETRY-GROUP BASED APPROACH
钝体尾流和流结构不稳定性的非线性动力学:基于对称群的方法
- 批准号:
RGPIN-2015-06604 - 财政年份:2019
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual
NONLINEAR DYNAMICS OF BLUFF-BODY WAKES AND FLUID-STRUCTURE INSTABILITIES: A SYMMETRY-GROUP BASED APPROACH
钝体尾流和流结构不稳定性的非线性动力学:基于对称群的方法
- 批准号:
RGPIN-2015-06604 - 财政年份:2018
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual
NONLINEAR DYNAMICS OF BLUFF-BODY WAKES AND FLUID-STRUCTURE INSTABILITIES: A SYMMETRY-GROUP BASED APPROACH
钝体尾流和流结构不稳定性的非线性动力学:基于对称群的方法
- 批准号:
RGPIN-2015-06604 - 财政年份:2017
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




