Pinning and Relaxation of Dislocations in Continuum and Atomistic Models
连续体和原子模型中位错的钉扎和弛豫
基本信息
- 批准号:441523275
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nucleation and glide of lattice dislocations is the most important mechanism of plastic deformation of ductile crystalline metals under external load. Studying dislocation motion is therefore of fundamental importance for understanding the mechanical strength of metals and alloys. Here, we propose to study some open problems of dislocation motion using both discrete atomistic and continuum approaches, of mutual benefit to both fields of modeling. On the continuum side, we will study line-tension based variational evolution of dislocations in heterogeneous environments. Interaction of dislocations with a heterogeneous environment leads to a stick-slip-behavior of the dislocation line. The mathematical interest now lies in the derivation of effective evolution models, which requires a description of the effective dislocation line tension. To this end, we will also consider relaxation problems. We will use full atomistic or mesoscopic (i.e., Peierls-Nabarro-type) models to construct energetically optimal microstructures on various length scales. It is an open question whether the microstructures derived from Peierls-Nabarro-type models can be observed in experiments. Such relaxation phenomena have not been studied using realistic atomistic models. We thus propose to use molecular dynamics simulation with realistic interaction potentials to study whether dislocation structures predicted from Peierls-Nabarro models can be stabilized. In order to be able to perform atomistic simulations on the length scales necessary to observe such mesoscopic relaxation phenomena, we will develop novel variational Green's function-based methods to provide exact elastic boundary conditions for atomistic simulation. Aside from classical materials we will also consider High Entropy Alloys (HEAs), a class of materials composed of usually five or more elements in high concentration. HEAs are interesting due to their potentially exceptional strength and hardness, wear resistance, and corrosion and oxidation resistance, among other desirable properties. From a modeling point of view, HEAs pose new challenges, as dislocations in these materials are immersed in a random spatially fluctuating environment. We will derive both novel mathematical tools as well as atomistic simulation approaches for stochastic homogenization of this random environment.
晶格位错的成核和滑移是延性结晶金属在外部载荷作用下塑性变形的最重要机制。因此,研究位错运动对于了解金属和合金的机械强度至关重要。在这里,我们建议使用离散原子和连续方法研究位错运动的一些开放问题,这对两个建模领域都是互利的。在连续体方面,我们将研究异质环境中基于线张力的位错变分演化。位错与异质环境的相互作用导致位错线的粘滑行为。现在的数学兴趣在于有效演化模型的推导,这需要描述有效位错线张力。为此,我们还会考虑松弛问题。我们将使用完整的原子或介观(即 Peierls-Nabarro 型)模型来构建各种长度尺度上的能量最佳微观结构。由 Peierls-Nabarro 型模型衍生的微观结构是否可以在实验中观察到是一个悬而未决的问题。这种弛豫现象尚未使用现实的原子模型进行研究。因此,我们建议使用具有真实相互作用势的分子动力学模拟来研究 Peierls-Nabarro 模型预测的位错结构是否可以稳定。为了能够在观察这种介观弛豫现象所需的长度尺度上进行原子模拟,我们将开发新颖的基于变分格林函数的方法,为原子模拟提供精确的弹性边界条件。 除了经典材料之外,我们还将考虑高熵合金 (HEA),这是一类通常由五种或更多高浓度元素组成的材料。 HEA 因其潜在的卓越强度和硬度、耐磨性、耐腐蚀和抗氧化性以及其他理想特性而备受关注。从建模的角度来看,HEA 提出了新的挑战,因为这些材料中的位错沉浸在随机空间波动的环境中。我们将推导出新颖的数学工具以及原子模拟方法来实现这种随机环境的随机均质化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Patrick Dondl其他文献
Professor Dr. Patrick Dondl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Patrick Dondl', 18)}}的其他基金
Discrete and phase field models of dislocations and their macroscopic limits
位错的离散和相场模型及其宏观极限
- 批准号:
35756821 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Units
Modeling and Analysis of Adhesion Hysteresis Between Rough Surfaces
粗糙表面之间的粘附滞后的建模与分析
- 批准号:
523956128 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Efficient Uncertainty Modeling for Additively Manufactured Polymer Scaffolds in Bone Tissue Engineering
骨组织工程中增材制造聚合物支架的高效不确定性建模
- 批准号:
428470437 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
CEDAR: Modeling of Initial Temperature Relaxation and Expansion of Meteor Trails
CEDAR:流星轨迹初始温度弛豫和扩展的建模
- 批准号:
2329677 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Molecular Radiative and Relaxation Processes
分子辐射和弛豫过程
- 批准号:
2246379 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Point-of Care MR Device to Estimate T1 Relaxation Time as a Biomarker of Liver Disease (resubmission)
用于估计 T1 弛豫时间作为肝病生物标志物的护理点 MR 设备(重新提交)
- 批准号:
10760778 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CAREER: Mapping and Manipulating Lattice Relaxation in Moire Superlattices of Group VI Transition Metal Dichalcogenides
职业:绘制和操纵第六族过渡金属二硫化物莫尔超晶格中的晶格弛豫
- 批准号:
2238196 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Hydrogels with Tunable Stress Relaxation and Mobility for Enhancing Articular Cartilage Regeneration
具有可调应力松弛和活动能力的水凝胶可增强关节软骨再生
- 批准号:
10750831 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Exact master equation for a discrete quantum system and the relaxation process
离散量子系统的精确主方程和弛豫过程
- 批准号:
23K03268 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of Physiological Relaxation Effects of Viewing Natural Landscape Images using Virtual Reality
阐明使用虚拟现实观看自然景观图像的生理放松效果
- 批准号:
23K02005 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local structure relaxation and non-equilibrium phase transition in dynamic facilitation of self-propelled complex molecular systems
自驱动复杂分子系统动态促进中的局部结构弛豫和非平衡相变
- 批准号:
23K03246 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure formation and energy relaxation by counter fast electron flow and background plasma
通过反快速电子流和背景等离子体形成结构和能量弛豫
- 批准号:
23H01150 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Advanced functionality of metallic glasses with inhomogeneous local structures by gradient and asymmetric multidimensional control of relaxation states
通过弛豫状态的梯度和不对称多维控制实现具有不均匀局部结构的金属玻璃的高级功能
- 批准号:
23H00228 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




