Hydrogels with Tunable Stress Relaxation and Mobility for Enhancing Articular Cartilage Regeneration
具有可调应力松弛和活动能力的水凝胶可增强关节软骨再生
基本信息
- 批准号:10750831
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-09-14
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAcuteAlginatesAnimal ModelBehaviorBiochemicalBiocompatible MaterialsBiological AssayBiological ModelsBreathingCalciumCartilageCatabolic ProcessCell VolumesCellsCellularityChemicalsChondrocytesChondrogenesisClinicalCuesCyclodextrinsDataDefectDegenerative polyarthritisDepositionDiseaseDoctor of PhilosophyDoseElasticityExhibitsFacultyHistologyHydrogelsImageImaging DeviceIn VitroIndividualInjectableInjuryKnowledgeLifeLigandsMedical ImagingMentorsMentorshipMesenchymal Stem CellsMethodsModelingMorbidity - disease rateNatural regenerationOptical Coherence TomographyOutcomePatientsPolymer ChemistryPolymersPositioning AttributeProceduresProductionPropertyQuality of lifeRattusRelaxationReportingRiskScientistSignal TransductionSiteSlideSpeedStressStructureSystemTestingTimeTissue EngineeringTissuesTranslationsVertebral columnWorkanimal imagingarticular cartilagecartilage regenerationcartilage repaircovalent bondcrosslinkdesignefficacy validationexperimental studyhydrogel scaffoldimprovedimproved mobilityin vivoin vivo regenerationinnovationmechanotransductionminimally invasivenovelosteochondral tissuepreventregenerative therapyrepairedresponseself-renewalstem cell deliverystem cell nichestem cellstoolviscoelasticity
项目摘要
Acute injury to articular cartilage is common and can significantly increase an individual’s risk for developing
osteoarthritis, yet effective regenerative therapies remain lacking. Cartilage has a limited capacity for self-
regeneration due to low cellularity and lack of vasculature. One promising strategy for cartilage repair is the use
of mesenchymal stem cells (MSCs). Injectable hydrogel carriers are particularly desirable for MSC delivery as
they can be applied to cartilage defects in minimally invasive procedures. Hydrogel design can be inspired by
native cartilage tissue properties such as stiffness and biochemical ligands, which have been extensively studied
in the context of MSC chondrogenesis in 3D. Cartilage is also viscoelastic, demonstrating stress relaxation
behavior in response to applied stresses. Using alginate hydrogels as a model system, it has been recently
shown that faster stress-relaxation enhances chondrocyte-based cartilage production. However, the way
viscoelasticity modulates MSC-based cartilage regeneration remains largely unknown.
Our lab has previously reported sliding hydrogels (SG) with mobile crosslinks that can slide along the PEG
polymer backbone, which significantly accelerated MSC chondrogenesis in 3D compared to non-mobile,
covalently crosslinked hydrogels. Unlike alginate hydrogels, SG is crosslinked by irreversible covalent bonds
and does not exhibit stress relaxation. Based on previous findings in both the SG and alginate hydrogel systems,
I hypothesize that introducing viscoelasticity to SG would further accelerate MSC-based cartilage regeneration
in a dose-dependent manner through enhanced mechanotransduction in vitro and in vivo. To test this hypothesis,
I propose to: (1) Develop and characterize adaptable sliding hydrogels (ASG) with tunable stress relaxation as
a 3D stem cell niche through the incorporation of dynamic crosslinks; (2) Evaluate the effect of stress relaxation
in ASG on MSC chondrogenesis in vitro and elucidate the underlying mechanisms by characterizing
mechanotransduction signaling; (3) Validate the efficacy of ASG with optimized stress relaxation in accelerating
MSC-based cartilage regeneration in vivo using a rat osteochondral defect model. Compared to alginate
hydrogels, the proposed PEG-based ASG is a cleaner system that presents cells with highly controlled niche
cues. The outcomes will fill a critical gap in knowledge about the way viscoelasticity influences MSC
chondrogenesis in 3D and pioneer the in vivo translation of dynamic hydrogels with viscoelasticity for cartilage
regeneration. I will be mentored by a team of basic and clinical scientists with complementary expertise in
biomaterials and tissue engineering, polymer chemistry, mechanotransduction, imaging and animal models. The
outcomes will fill a critical gap in knowledge about the way that viscoelasticity influences MSC chondrogenesis
in 3D and validate adaptable sliding hydrogels as a new biomaterial for accelerating MSC-based cartilage
regeneration.
关节软骨的急性损伤是常见的,并且可以显著增加个体发展成关节炎的风险。
骨关节炎,但仍然缺乏有效的再生疗法。Carbohydrate有一个有限的自我能力-
由于低细胞性和缺乏脉管系统而导致的再生。软骨修复的一个有前途的策略是使用
间充质干细胞(MSCs)可注射的水凝胶载体对于MSC递送是特别理想的,
它们可以在微创手术中应用于软骨缺损。水凝胶设计的灵感来自于
天然软骨组织特性,例如硬度和生化配体,已被广泛研究
in the context背景of MSC软骨genesis生成in 3D.软骨也是粘弹性的,表明应力松弛
对施加压力的反应。使用藻酸盐水凝胶作为模型系统,
显示更快的应力松弛增强了基于软骨细胞的软骨产生。然而,
粘弹性调节基于MSC的软骨再生在很大程度上仍是未知的。
我们的实验室以前曾报道过滑动水凝胶(SG)与移动的交联,可以滑动沿着PEG
聚合物骨架,与非移动相比,其在3D中显著加速MSC软骨形成,
共价交联的水凝胶。与藻酸盐水凝胶不同,SG通过不可逆共价键交联
并且不表现出应力松弛。基于先前在SG和藻酸盐水凝胶系统中的发现,
我推测,将粘弹性引入SG将进一步加速基于MSC的软骨再生
在体外和体内通过增强的机械转导以剂量依赖性的方式。为了检验这一假设,
我建议:(1)开发和表征具有可调应力松弛的自适应滑动水凝胶(ASG),
通过动态交联的掺入形成3D干细胞龛;(2)评估应力松弛的效果
在ASG对MSC软骨形成的体外研究中,
(3)通过优化应力松弛来验证ASG在加速机械传导信号传导中的功效。
使用大鼠骨软骨缺损模型的基于MSC的体内软骨再生。与海藻酸盐相比
基于PEG的ASG是一种更清洁的系统,可为细胞提供高度受控的生态位
线索这些结果将填补粘弹性影响MSC的方式方面的知识空白
3D软骨形成,开创了具有粘弹性的动态水凝胶在软骨中的体内翻译
再生我将由一个基础和临床科学家团队指导,他们在以下方面具有互补的专业知识:
生物材料和组织工程,高分子化学,机械传导,成像和动物模型。的
结果将填补粘弹性影响MSC软骨形成的知识的关键空白,
在3D和验证适应性滑动水凝胶作为一种新的生物材料,加速MSC为基础的软骨
再生
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SARAH JANE JONES其他文献
SARAH JANE JONES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)