Large Genus Limit of Energy Minimizing Compact Minimal Surfaces in the 3-Sphere
3-球体中能量最小化紧极小曲面的大亏格极限
基本信息
- 批准号:441840982
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We aim at finding a pathway towards an implicit function theorem argument to confirm the Kusner conjecture for compact surfaces of high genus, which states that the (simplest) Lawson surfaces minimize the Willmore energy among compact surfaces of genus g. Moreover, we aim at constructing generating functions for the area (resp. the Willmore energy) of the Lawson surfaces. Our investigations include1) classifying all possible large genus limits of Willmore minimizers of genus g. We conjecture the only limit surface to be two intersecting 2-spheres at right angle. The precise asymptotic will help to find appropriate Sobolev spaces to define closeness of immersions of high genera;2) generalizing our DPW deformation methods to CMC surfaces, Willmore surfaces, and to other initial conditions. In particular, we aim at reconstructing the Kapouleas surfaces via DPW and show that their Willmore energy is higher than the ones of the Lawson surfaces with the same genus;3) showing that all symmetric Willmore immersions have a DPW potential of a particular Ansatz type.As a corollary we obtain that the Lawson surfaces \xi_{1,g} are the only symmetric surfaces close to the two intersecting 2-spheres;4) compute further terms in the area expansion of Lawson surfaces. Find recursive formulas for its coefficients; 5) generalization of the results to the whole Lawson family. In particular, computation of the area of the Lawson surfaces in terms as a function of their genus.
我们的目的是找到一条通往隐函数定理论证的途径来证实高亏格紧致曲面的Kusner猜想,即(最简单的)Lawson曲面最小化g亏格紧致曲面中的Willmore能量。此外,我们还构造了面积的母函数。威尔莫尔能量)。我们的研究包括:1)对亏格g的Willmore极小子的所有可能的大亏格极限进行分类,我们猜想唯一的极限曲面是两个相交的直角2-球面。精确的渐近性将有助于找到合适的Sobolev空间来定义高亏格的浸入的封闭性;2)将我们的DPW变形方法推广到CMC曲面、Willmore曲面和其他初始条件。特别地,我们利用DPW来重构Kapouleas曲面,并且证明了它们的Willmore能量高于具有相同亏格的Lawson曲面的Willmore能量;3)证明了所有对称的Willmore浸没都具有特定Anatz型的DPW势.作为推论,我们得到了Lawson曲面是唯一靠近两个相交的2-球面的对称曲面;4)计算了Lawson曲面的面积扩展项.求其系数的递推公式;5)将结果推广到整个Lawson族。特别地,计算Lawson曲面作为亏格的函数的面积。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Roger Bielawski, since 8/2022其他文献
Professor Roger Bielawski, since 8/2022的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
三种冠长臂猿(genus Nomascus)鸣声节奏及其功能研究
- 批准号:32300393
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
How the mushroom lost its gills: phylogenomics and population genetics of a morphological innovation in the fungal genus Lentinus
蘑菇如何失去鳃:香菇属真菌形态创新的系统基因组学和群体遗传学
- 批准号:
2333266 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323414 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Mining the chemodiversity of the genus Myrica to reveal bioactive molecules for their medicinal uses
挖掘杨梅属的化学多样性,揭示其药用生物活性分子
- 批准号:
2880591 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Distribution of type three secretion system genes and their association with the diarrheagenicity of genus Providencia
普罗威登斯菌三型分泌系统基因分布及其与致泻性的关系
- 批准号:
23KF0152 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
BRC-BIO: Understanding the Role of Species Interactions in Evolutionary Radiations Through the Evolution of Non-flying Mammal Pollination in the Iconic Plant Genus Protea
BRC-BIO:通过标志性植物普罗蒂亚属非飞行哺乳动物授粉的进化来了解物种相互作用在进化辐射中的作用
- 批准号:
2233118 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Functional analysis of luciferase and proteins involved in the storage of luciferin from lantern shark; genus Etmopterus
灯笼鲨荧光素酶和参与储存荧光素的蛋白质的功能分析;
- 批准号:
23KJ2063 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Is Lactobacillus really our friend? -Identification of invasion suppressive Lactobacillus genus in placentation
乳酸菌真的是我们的朋友吗?
- 批准号:
23K15843 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Landscape genomics of co-evolution: a test in carpenter ants (Genus Camponotus) and their microbial symbionts
职业:共同进化的景观基因组学:木蚁(弓背蚁属)及其微生物共生体的测试
- 批准号:
2238571 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant