Indirect Time Series Analysis of Chaos and Its Applications to Designs of 1/f Noise Generators Using SC Circuits
混沌的间接时间序列分析及其在 SC 电路 1/f 噪声发生器设计中的应用
基本信息
- 批准号:05836025
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are two kinds of time series analysis for one-dimensional discrete chaos. One of them is the "time-average technique" in which we evaluate certain statistics of a sample long-time trajectory with some initial value ; the other one is the "ensemble-average techinque" based on an absolutely continuous invariant measure of the map which is referred to as the "indirect method". Such an indirect method is expected to play an important role in theoretically understanding chaos. In fact, the Perron-Frobenius (PF) operator permits us to theoretically calculate the ensemble average of several statistics. However, this operator, denoted by P_r, cannot be calculated directly because of its infinite dimensionality. In this research, we have given an efficient algorithm for systematically calculating several statistics, which is based on the Galerkin approximation to the operator PP_r, on a suitable function space. Furthermore, we have presented switched capacitor (SC) circuits for generation of 1/f noise which simulate dynamical systems with Procaccia-Schuster-type maps.Usually, statistics of a chaotic trajectory itself (i.e., real-valued sequence) have been investigated. Recently, however, we give simple methods to obtain binary sequences from chaotic trajectories. In spread spectrum systems and cryptosystems, binary sequences with good correlation properties are required. In this research, we have theoretically evaluated statistics of chaotic binary sequences by the ensemble-average technique based on the PF operator. It has been shown that such chaotic binary sequences have good correlation properties. Moreover, we have theoretically evaluated high-order statistics of chaotic real-valued and binary sequences. Thus we have showed that chaotic sequences generated by the Chebyshev maps have quite good statistical properties.
一维离散混沌的时间序列分析方法有两种。其中一种是“时间平均技术”,它用一定的初值来估计样本长时间轨迹的某些统计量;另一种是基于映射的绝对连续不变度量的“集合平均技术”,称为“间接法”。这种间接的方法有望在从理论上理解混沌方面发挥重要作用。事实上,Perron-Frobenius(PF)算符允许我们在理论上计算几个统计量的集合平均。然而,由于它的无穷维性,这个算子P_r不能直接计算。在这项研究中,我们给出了一个在适当的函数空间上系统地计算几个统计量的有效算法,该算法基于对算子PP_r的Galerkin逼近。此外,我们还提出了用于产生1/f噪声的开关电容(SC)电路,用于模拟具有Procaccia-Schuster类型映射的动态系统。通常,我们还研究了混沌轨迹本身(即实值序列)的统计特性。然而,最近,我们给出了从混沌轨迹中获得二进制序列的简单方法。在扩频系统和密码系统中,需要具有良好的相关特性的二进制序列。在本研究中,我们利用基于PF算子的集成平均技术,从理论上评估了混沌二进制序列的统计特性。研究表明,这种混沌二进制序列具有良好的相关特性。此外,我们还从理论上评估了混沌实值序列和二值序列的高阶统计量。从而证明了由切比雪夫映射产生的混沌序列具有很好的统计特性。
项目成果
期刊论文数量(90)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
香田徹: "擬似乱数とカオス" 応用統計学会第17回シンポジウム講演予稿集. 26-31 (1995)
Toru Koda:“伪随机数和混沌”日本应用统计学会第 17 届研讨会论文集 26-31(1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Kohda: "Correlation Properties of PN Sequences for CDMA : Chaotic Binary Sequences, Gold Sequences, and Kasami Sequences" Proc. of URSI'93. 127-127 (1993)
T. Kohda:“CDMA PN 序列的相关属性:混沌二进制序列、Gold 序列和 Kasami 序列”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tohru Kohda: "On Distributions of Statistics of Chaotic Sequences" Proceedings of NOLTA'95. 2. 873-876 (1995)
Tohru Kohda:“论混沌序列的统计分布”NOLTA95 论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kohda: "Pseudonoise Sequences by Chaotic Nonlinear Maps and Their Correlation Properties" IEICE Trans., Communications. vol.E76-B,no.8. 855-862 (1993)
T.Kohda:“混沌非线性映射的伪噪声序列及其相关属性”IEICE Trans.,通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kohda: "Fluctuations of Statistics of Chaotic Sequences of Finite Period" Proc. of SITA '94. 165-168 (1994)
T.Kohda:“有限周期混沌序列统计的涨落”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOHDA Tohru其他文献
KOHDA Tohru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOHDA Tohru', 18)}}的其他基金
Code design based on dynamical systems theory and its application to digital communications
基于动力系统理论的代码设计及其在数字通信中的应用
- 批准号:
20360174 - 财政年份:2008
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asynchronous DS/CDMA systems employing spreading codes generated by chaos maps with Markovity
采用由 Markovity 混沌映射生成的扩频码的异步 DS/CDMA 系统
- 批准号:
15360206 - 财政年份:2003
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Digital chaos cipher system
数字混沌密码系统
- 批准号:
12450155 - 财政年份:2000
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On an identification algorithm of transition probabilities and eigenvalues of transition matrix
一种转移矩阵转移概率和特征值的辨识算法
- 批准号:
11554004 - 财政年份:1999
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stream Cipher System Based on Chaotic Binary Sequences
基于混沌二进制序列的流密码系统
- 批准号:
09650418 - 财政年份:1997
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A RANDOMNESS TEST FOR PSEUDO-RANDOM NUMBER GENERATORS AND CHAOS GENRATORS
伪随机数发生器和混沌发生器的随机性测试
- 批准号:
62550249 - 财政年份:1987
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
JOSEPHSONJUNCTION的动力学与紊动(CHAOS)现象
- 批准号:18670411
- 批准年份:1986
- 资助金额:0.55 万元
- 项目类别:面上项目
相似海外基金
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
- 批准号:
2348453 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Investigation of synchronized phenomena and its application to chaos control in a laboratory plasma
同步现象的研究及其在实验室等离子体混沌控制中的应用
- 批准号:
23K03355 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast Chaos Detection through Data-Driven Approach
通过数据驱动方法进行快速混沌检测
- 批准号:
23K16963 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
- 批准号:
2306332 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
CloudEnergyBalance: Simple climate models to quantify impact of large-scale cloudiness & deterministic chaos on climatic variability & tipping points
CloudEnergyBalance:用于量化大规模多云影响的简单气候模型
- 批准号:
EP/Y01653X/1 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Fellowship
Wasserstein-Type Gradient Flow via Propagation by Chaos for a Continuous Formulation of a Shallow Neural Network
通过混沌传播的 Wasserstein 型梯度流用于连续制定浅层神经网络
- 批准号:
2879236 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Studentship
Development of an optimization method using chaos for spin devices
开发利用混沌的自旋器件优化方法
- 批准号:
23KJ0331 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
- 批准号:
EP/V055755/1 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Research Grant