FORMAION OF PATTERN,TRANSITION,CHAOS AND TURBULENCE IN RAYLEIGH-BENARD CONVECTION
瑞利-伯纳德对流中的模式、转变、混沌和湍流的形成
基本信息
- 批准号:06640535
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mechanism of the pattern formation, transition, chaos and properties of turbulence in Rayleigh-Benard convection was investigated by numerical calculation of the nonlinear equilibrium solution and by the stability analysis. The present project consists of the following four researches.1. The mechanism of the pattern formation in the thermal convection between two hoizontal planes with infinite extent is investigated. An amplitude equation is derived by the weakly nonlinear stability theory and its coefficients are evaluated numerically. The conditions for the onset of hexagonal or roll-like patterns are determined.2. The onset and stability of the convection in a vessel of finite volume is investigated. It is shown that the number of vortices varies depending on the lateral extent of the vessel.3. The stability and the transition of the thermal convection is investigated by numerical simulation. It is found that a large scale circular motion appears as a result of the thermal instability first, but thermal convection with two circular vorties take the place of the large scale circular motion when the temperature of the bottom is raised.4. When the vessel is placed at an angle from the horizontal plan, the thermal convection always appears even if the difference of the temperatures at the top and bottom is very small. The occurrence of the convection is found due to the imperfect pitchfork bifurcation. The equilibrium solution for the thermal convection was obtained numerically and its stability was clarified.
通过对非线性平衡解的数值计算和稳定性分析,研究了Rayleigh-Benard对流中斑图的形成、转捩、混沌和湍流特性的机理。本课题主要包括以下四个方面的研究.本文研究了两无限大平面间热对流斑图的形成机理。利用弱非线性稳定性理论导出了振幅方程,并对方程系数进行了数值计算。确定了六角或卷状斑图出现的条件.本文研究了有限体积容器中对流的开始和稳定性。结果表明,涡的数量随船舶的横向范围而变化。通过数值模拟研究了热对流的稳定性和转捩。研究发现,热不稳定性首先导致大尺度的圆周运动,但当底部温度升高时,大尺度的圆周运动被双圆涡热对流所取代.当容器与水平面成一定角度放置时,即使容器顶部和底部的温差很小,也会出现热对流。对流的发生是由于不完美的干草叉分叉。通过数值计算得到了热对流的平衡解,并阐明了其稳定性。
项目成果
期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Jiro Mizushima: "Structural stability of the pitchfork bifurcation of thermal convection in a rectaugular cavity" Journal of the Physical Society of Japan. 64. 4670-4683 (1995)
Jiro Mizushima:“直肠腔内热对流干草叉分叉的结构稳定性”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Keisuke Araki: "Thermal Instability of a Fluid in a Sphericall Shell with thin Layer Approximation Analysis" Journal of the Physical Society of Japan. 63. 2123-2132 (1994)
Keisuke Araki:“球壳流体的热不稳定性的薄层近似分析”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Jiro Mizushima: "Onset of the thermal convection in a finite two-dimensional box" Jornal of the Physical Society of Japan. vol.63. 2123-2132 (1995)
Jiro Mizushima:“有限二维盒子中热对流的开始”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shinichiro Yanase: "Multiple solutions for a flow between two concentric spheres with different temperatures and their stability" Journal of the Physical Society of Japan. 64. 2433-2443 (1995)
Shinichiro Yanase:“不同温度的两个同心球之间流动的多种解决方案及其稳定性”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Jiro Mizushima: "Structural stability of the pitchfork bifurcution of thermal convection in a rectangular cavity" Journal of the Physicla Society of Japan. 64. 4670-4683 (1995)
水岛次郎:“矩形腔内热对流干草叉分岔的结构稳定性”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIZUSHIMA Jiro其他文献
MIZUSHIMA Jiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIZUSHIMA Jiro', 18)}}的其他基金
Christian Democracy in Western Europe: Crisis or Innovation?
西欧的基督教民主:危机还是创新?
- 批准号:
22530115 - 财政年份:2010
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Physical mechanism in appearance of rhythms and patterns in flow fields
流场节律和模式出现的物理机制
- 批准号:
21540400 - 财政年份:2009
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Confluence of flow past an array of circular cylinders and its transition to turbulence.
流经一系列圆柱体的汇合及其转变为湍流。
- 批准号:
14540383 - 财政年份:2002
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TRANSITIONS AND INSTABILITIES OF FLOW IN A CHANNEL WITH A SUDDENLY EXPAN DED PART
具有突然扩展的 DED 部分的通道中流动的转变和不稳定性
- 批准号:
09640494 - 财政年份:1997
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Characterising Flow Regimes and Transitions, Heat Transport and Energy/Enstrophy Cascades in Rapidly Rotating Thermal Convection
表征快速旋转热对流中的流动状态和转变、热传输和能量/熵级联
- 批准号:
EP/W022087/1 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Research Grant
The effect of suspended particles on Rayleigh-Bénard buoyant thermal convection
悬浮颗粒对瑞利-贝纳德浮力热对流的影响
- 批准号:
2053204 - 财政年份:2021
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Development of a Venusian non-hydrostatic atmospheric general circulation model for exploring the role of thermal convection in large-scale structures in the cloud layer
开发金星非静水大气环流模型,用于探索热对流在云层大尺度结构中的作用
- 批准号:
20K04062 - 财政年份:2020
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Heat and mass transport process in the Earth's liquid core viewed from quantitative visualization experiments of thermal convection in a liquid metal layer
从液态金属层热对流的定量可视化实验观察地球液体核心的热量和质量传输过程
- 批准号:
20K04114 - 财政年份:2020
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of versatile optical measurement principles for identifying multiscale physics in thermal convection
开发用于识别热对流中多尺度物理的通用光学测量原理
- 批准号:
19J20096 - 财政年份:2019
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Phase transition to intermittent velocity gradient statistics in thermal convection
热对流中的相变到间歇速度梯度统计
- 批准号:
417275129 - 财政年份:2019
- 资助金额:
$ 1.41万 - 项目类别:
Research Grants
Experimental Analysis of Turbulent Superstructures in Thermal Convection by Time-Resolved Lagrangian Particle Tracking up to Very High Rayleigh Numbers
通过高达极高瑞利数的时间分辨拉格朗日粒子跟踪对热对流中的湍流上层结构进行实验分析
- 批准号:
429432497 - 财政年份:2019
- 资助金额:
$ 1.41万 - 项目类别:
Priority Programmes
Reaction accerelation and rapid detection by centrifugation-controlled microfluidic thermal convection
通过离心控制的微流体热对流进行反应加速和快速检测
- 批准号:
18H01798 - 财政年份:2018
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Thermal convection at high aspect ratio: The local distribution and the dynamics of dissipative processes
高纵横比下的热对流:耗散过程的局部分布和动力学
- 批准号:
390361628 - 财政年份:2017
- 资助金额:
$ 1.41万 - 项目类别:
Research Grants
Rotating turbulent thermal convection at large Rayleigh numbers
大瑞利数下的旋转湍流热对流
- 批准号:
324106305 - 财政年份:2017
- 资助金额:
$ 1.41万 - 项目类别:
Research Grants














{{item.name}}会员




