TRANSITIONS AND INSTABILITIES OF FLOW IN A CHANNEL WITH A SUDDENLY EXPAN DED PART

具有突然扩展的 DED 部分的通道中流动的转变和不稳定性

基本信息

  • 批准号:
    09640494
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 2000
  • 项目状态:
    已结题

项目摘要

Transitions and instabilities of flow in a symmetric channel with a suddenly expanded and contracted part are investigated theoretically by three different methods, i.e. the time marching method for dynamical equations, the SOR iterative method and the finite element method for steady-state equations. Linear and weakly nonlinear stability theories are applied to the flow. The transitions are confirmed experimentally by flow visualizations and velocity measurements. It is found that the flow is steady and symmetric at low Reynolds numbers, becomes asymmetric at a critical Reynolds number, gets the symmetry back at another critical Reynolds number and becomes oscillatory at very large Reynolds numbers. Multiple stable steady-state solutions are found in some cases, which lead to a hysteresis. The critical conditions for the existence of the multiple stable steady-state solutions are determined numerically and compared with the results of the linear and weakly nonlinear stability analyses. An exchange of modes for oscillatory instabilities is found to occur in the flow as the aspect ratio, the ratio of the length of the expanded part to its width, is varied, and its relation with the impinging free shear layer instability (IFLSI) is discussed. Transitions of flow in a channel with an inlet and two outlets are also investigated and the pressure distribution in the flow fields is obtained numerically.
用三种不同的方法,即求解动力学方程的时间推进法、求解稳态方程的SOR迭代法和求解稳态方程的有限元方法,从理论上研究了具有突增和突缩部分的对称流道中流动的转变和不稳定性。将线性和弱非线性稳定性理论应用到流动中。流动显示和速度测量在实验上证实了这种转变。结果表明,流动在低雷诺数时是稳定的对称流动,在一个临界雷诺数时变得不对称,在另一个临界雷诺数时恢复对称,在很大雷诺数时变得振荡。在某些情况下,存在多个稳定的稳态解,这导致了迟滞现象。用数值方法确定了存在多个稳定定态解的临界条件,并与线性和弱非线性稳定性分析的结果进行了比较。结果表明,随着展弦比(扩展段长度与宽度之比)的变化,流动中发生了振荡不稳定性的模式转换,并讨论了它与撞击自由剪切层不稳定性(IFLSI)的关系。文中还研究了双进双出流道内的流动转变,得到了流场中的压力分布。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
水島二郎: "急拡大・急縮小流路流れの流体力学的特性" 日本機械学会論文集(B編). 64,624. 2491-2498 (1998)
Jiro Mizushima:“快速扩张和收缩通道流的流体动力学特性”,日本机械工程师学会汇刊(B 版) 2491-2498(1998 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Keisuke Araki: "The nonaxisymmetric instability of the wide-gap spherical Couette flow" Physics of fluids. 9,4. 1197-1199 (1997)
Keisuke Araki:“宽间隙球形库埃特流的非轴对称不稳定性”流体物理学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jiro Mizushima: "Onset of 3D thermal convection in a cubic cavity"Journal of the Physical of Japan. 66. 2337-2341 (1997)
Jiro Mizushima:“立方空腔中 3D 热对流的开始”《日本物理学杂志》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Mizushima, T.Adachi, Y.Shiotani: "Transitions and instabilities of flow in a symmetric channel with a suddenly expanded and contracted part."Turbulence and Shear Flow-1. vol.1. 977-982 (1999)
J.Mizushima、T.Adachi、Y.Shiotani:“具有突然膨胀和收缩部分的对称通道中流动的转变和不稳定性。”湍流和剪切流-1。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jiro Mizushima: "Transitions of flow past a row of square bars"Journal of Fluid Mechanics. 405. 305-323 (2000)
水岛二郎:“流过一排方条的流动转变”流体力学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIZUSHIMA Jiro其他文献

MIZUSHIMA Jiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIZUSHIMA Jiro', 18)}}的其他基金

Christian Democracy in Western Europe: Crisis or Innovation?
西欧的基督教民主:危机还是创新?
  • 批准号:
    22530115
  • 财政年份:
    2010
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Physical mechanism in appearance of rhythms and patterns in flow fields
流场节律和模式出现的物理机制
  • 批准号:
    21540400
  • 财政年份:
    2009
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Confluence of flow past an array of circular cylinders and its transition to turbulence.
流经一系列圆柱体的汇合及其转变为湍流。
  • 批准号:
    14540383
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FORMAION OF PATTERN,TRANSITION,CHAOS AND TURBULENCE IN RAYLEIGH-BENARD CONVECTION
瑞利-伯纳德对流中的模式、转变、混沌和湍流的形成
  • 批准号:
    06640535
  • 财政年份:
    1994
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Elucidation of the mechanism of sudden expansion of norovirus with a specific genotype
阐明特定基因型诺如病毒突然扩增的机制
  • 批准号:
    16K09956
  • 财政年份:
    2016
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Flow of a wood pulp suspension through sudden expansion ducts and dispersion control of a high-consistency pulp-fibers
木浆悬浮液通过突然膨胀管道的流动和高浓度纸浆纤维的分散控制
  • 批准号:
    23560212
  • 财政年份:
    2011
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bifurcation phenomena in the flow through a sudden expansion in a pipe.
通过管道中突然膨胀的流动时出现分叉现象。
  • 批准号:
    EP/E013724/1
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Research Grant
Convective Heat Transfer Near the Reattachment Point of a Turbulent Flow Downstream of a Sudden Expansion in a Smooth Circular Pipe
光滑圆管内突然膨胀下游湍流再附着点附近的对流换热
  • 批准号:
    8018407
  • 财政年份:
    1981
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了