Stabilization mechanisms of nonpolar metal colloids with thin organic shells
薄有机壳非极性金属胶体的稳定机制
基本信息
- 批准号:443142444
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nonpolar nanoparticles are an important class of colloids. Syntheses developed in the last two decades yield particles of gold, silver, copper, and other metals and semiconductors. Their cores are covered with organic ligands that render them dispersible in alkanes, aromatics, and other nonpolar solvents. These particles are uncharged and not stabilized by Coulomb repulsion. Recent results from the applicant and other research groups demonstrate, however, that certain combinations of metal core, ligand, and solvent lead to unexpectedly great colloidal stabilities. The results indicate that the stability is due to the molecular structure of the shell. This is in stark contrast to conventional aqueous colloids that are described in DLVO theory.We propose here that nonpolar metal colloids with thin organic shells are stabilized by three mechanisms that have not yet been studied systematically: the entropic contributions of disordered ligand shells; the solvation of the organic shells by solvents that strongly interact on a molecular level; and the intercalation of solute molecules in the ligand shell that provide synergistic stability.This project investigates the proposed mechanisms using gold colloids with core diameters of 1-10 nm. Systematic series are chemically synthesized and covered with strongly bound linear, branched, or kinked (unsaturated) hydrocarbon chains. The resulting colloids are carefully purified and transferred to different solvents and solvent mixtures. The structure of the particles - in particular the density of the shell and its configuration - is assessed quantitatively.The colloidal stability or the dispersions is quantified as a function of concentration using a new technique where a droplet of colloid slowly evaporates during Small-Angle X-ray Scattering. Both particle concentration and agglomeration state are monitored. Thermal stability is measured using temperature-dependent X-ray and dynamic light scattering experiments. The molecular shell structure is analyzed using a combination of thermogravimetry, Raman spectrometry, NMR, optical scattering, and X-ray scattering.All experimental results are compared to detailed Molecular Dynamic simulations that are available in the group of Dr. Asaph Widmer-Cooper in Sydney, Australia. They were refined in previous collaborations between the two groups and will now be used to test the proposed mechanisms of nanoparticle stabilization.
非极性纳米粒子是一类重要的胶体。在过去的二十年里发展起来的合成技术产生了金、银、铜和其他金属和半导体颗粒。它们的核心被有机配体覆盖,这使得它们可以分散在烷烃、芳烃和其他非极性溶剂中。这些粒子不带电荷,也不会因库仑斥力而稳定。然而,申请人和其他研究小组的最新结果表明,金属核、配体和溶剂的某些组合会导致出人意料的极大的胶体稳定性。结果表明,壳层的稳定性与壳层的分子结构有关。这与DLVO理论中描述的传统水溶液胶体形成了鲜明的对比。我们提出,具有薄有机壳层的非极性金属胶体通过三种尚未被系统研究的机制来稳定:无序配体壳层的熵贡献;有机壳层在分子水平上强相互作用的溶剂溶剂化;以及提供协同稳定性的溶质分子在配体壳层中的嵌入。本项目使用核直径为1-10 nm的金胶来研究所提出的机理。系统系列是化学合成的,并覆盖有强结合的直链、支链或扭结(不饱和)碳氢链。生成的胶体经过仔细的提纯,然后转移到不同的溶剂和混合溶剂中。对颗粒的结构--特别是壳层的密度及其构型--进行了定量评估。胶体稳定性或分散性作为浓度的函数被量化,使用了一种新的技术,即胶滴在小角X射线散射过程中缓慢蒸发。同时监测颗粒浓度和团聚状态。用随温度变化的X射线和动态光散射实验测量了其热稳定性。利用热重、拉曼光谱、核磁共振、光学散射和X射线散射等手段对分子壳结构进行了分析,并将所有实验结果与澳大利亚悉尼Asaph Widmer-Cooper博士团队提供的详细分子动力学模拟结果进行了比较。它们在两个小组之前的合作中得到了改进,现在将用于测试拟议的纳米颗粒稳定机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Tobias Kraus其他文献
Professor Dr. Tobias Kraus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Tobias Kraus', 18)}}的其他基金
Agglomeration of fractal carbon particles into electrically conductive networks in elastomer nanocomposites
分形碳颗粒在弹性体纳米复合材料中聚集成导电网络
- 批准号:
404913146 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Nanoparticle agglomeration and assembly in confined spaces
纳米粒子在有限空间内的团聚和组装
- 批准号:
238303265 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Mobilität und Interaktion bei der regulären Anordnung von Nanopartikeln
纳米粒子规则排列的迁移性和相互作用
- 批准号:
160444238 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Shape stabilisation of ultrathin nanowires by core material, ligand shell, and environment
核材料、配体壳和环境对超细纳米线形状的稳定
- 批准号:
511445611 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Biomimetic robots autonomously driven by dielectric elastomers (BROADCAST)
由介电弹性体自主驱动的仿生机器人(广播)
- 批准号:
498165449 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
- 批准号:82371255
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
相似海外基金
CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
- 批准号:
2338178 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
- 批准号:
2338209 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: 2024 Thiol-Based Redox Regulation and Signaling GRC and GRS: Mechanisms and Consequences of Redox Signaling
会议:2024年基于硫醇的氧化还原调节和信号传导GRC和GRS:氧化还原信号传导的机制和后果
- 批准号:
2418618 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Probing structural dynamics and regulatory mechanisms of RNA-guided CRISPR-Cas12 endonucleases and their analogues
职业:探索 RNA 引导的 CRISPR-Cas12 核酸内切酶及其类似物的结构动力学和调控机制
- 批准号:
2339799 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Measurement of Photochemical Mechanisms, Rates, and Pathways of Radical Formation in Complex Organic Compounds
职业:测量复杂有机化合物中自由基形成的光化学机制、速率和途径
- 批准号:
2340926 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
- 批准号:
2341006 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




