Towards comprehensive myelin assessment: combining multi-contrast quantitative MRI with spatially resolved lipodomics in the human brain
迈向全面的髓磷脂评估:将多对比定量 MRI 与人脑空间分辨脂质组学相结合
基本信息
- 批准号:446291874
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to establish matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) as a tool for the validation and development of quantitative MRI (qMRI) – based markers of myelin. Myelin is a lipid-rich substance that is crucial for healthy brain functioning. The study of myelin in vivo relies on qMRI. Various qMRI parameters are sensitive to myelination, but specificity can only be achieved by biophysical or data-driven modeling approaches. Both the development and validation of such models rely on reliable ‘ground-truth’ myelin maps from histology. Currently, staining intensity from classical histology or immunohistochemistry is frequently used as an approximation for tissue myelin content. In preliminary research, we have observed that different histological methods differ in the patterns of myelination they yield in the cortex. This difference is likely related to variability in myelin composition across different brain tissue types. Considering this composition is crucial in the context of qMRI, as different lipid species are known to differ in their MR properties. So far, relating lipidomics to qMRI has been limited to studies conducted with phantoms.Here, we want to exploit a method that can capture the biochemical composition of myelin in sections of human brain tissue: MALDI-MSI. Building upon previously collected pilot data, we will develop an optimized workflow for the acquisition and analysis of MALDI-MSI data. Hereby, we will tackle a number of methodological challenges related to lipid quantification with MALDI-MSI: identification of the lipids underlying most important peaks, calibration of the lipid maps through application of internal standards, clustering of the brain tissue based on its lipid composition, and the co-registration of lipid concentration maps with qMRI maps. We will address the following research questions: a) What is the best MALDI-MSI-derived metric for myelin quantification? b) How does the tissue lipid composition impact on different qMR parameters? d) Can tissue lipid composition be inferred from a combination of qMRI parameters? Diagnosis, patient stratification and treatment of demyelinating neurological diseases is constrained by a lack of tools to accurately quantify myelination in vivo. Currently available measures suffer from low specificity and can therefore not easily be compared across individuals or over time. This limits their interpretability in clinical studies and hinders their applicability to personalised medicine. The combination of qMRI data and lipidomics in human brain tissue sections is an important step towards meeting the need for reliable MR markers that are specific to tissue myelination. The data collected in this project will act as unique reference material for future efforts in establishing biophysical and data-driven models.
该项目的目的是建立基质辅助激光解吸/电离质谱成像(MALDI-MSI)作为验证和开发基于定量MRI(qMRI)的髓鞘标记物的工具。髓磷脂是一种富含脂质的物质,对健康的大脑功能至关重要。体内髓磷脂的研究依赖于qMRI。各种qMRI参数对髓鞘形成敏感,但特异性只能通过生物物理或数据驱动的建模方法来实现。这种模型的开发和验证都依赖于来自组织学的可靠的“地面实况”髓鞘图谱。目前,来自经典组织学或免疫组织化学的染色强度经常被用作组织髓鞘含量的近似值。在初步研究中,我们观察到不同的组织学方法在皮质中产生的髓鞘形成模式不同。这种差异可能与不同脑组织类型中髓鞘成分的变异性有关。考虑到这种组成在qMRI的背景下是至关重要的,因为已知不同的脂质物质在其MR特性方面不同。到目前为止,将脂质组学与qMRI联系起来仅限于使用体模进行的研究。在这里,我们想要开发一种可以捕获人脑组织切片中髓鞘生化组成的方法:MALDI-MSI。在以前收集的试点数据的基础上,我们将开发一个优化的工作流程,用于MALDI-MSI数据的采集和分析。因此,我们将解决一些与MALDI-MSI脂质定量相关的方法学挑战:识别最重要峰的脂质,通过应用内标物校准脂质图,基于其脂质组成的脑组织聚类,以及脂质浓度图与qMRI图的配准。我们将解决以下研究问题:a)什么是最好的MALDI-MSI衍生髓鞘定量指标?B)组织脂质成分如何影响不同的qMR参数?d)组织脂质成分可以从qMRI参数的组合中推断出来吗?脱髓鞘神经系统疾病的诊断、患者分层和治疗受到缺乏精确量化体内髓鞘形成的工具的限制。目前可用的措施的具体性低,因此不容易在个人之间或在一段时间内进行比较。这限制了它们在临床研究中的可解释性,并阻碍了它们对个性化医疗的适用性。在人脑组织切片中结合qMRI数据和脂质组学是满足对组织髓鞘形成特异性的可靠MR标记物的需求的重要一步。该项目收集的数据将作为今后建立生物物理和数据驱动模型的独特参考材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Ilona Lipp其他文献
Dr. Ilona Lipp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
- 批准号:
2339556 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
- 批准号:
2401876 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a comprehensive microbial immunotherapy platform with immuno-transcriptomic monitoring for treatment of bladder cancer (DOCMI-BC)
开发用于治疗膀胱癌的具有免疫转录组监测的综合微生物免疫治疗平台(DOCMI-BC)
- 批准号:
10087336 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
- 批准号:
10752046 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowship: SPRF: A Comprehensive Modeling Framework for Semantic Memory Search
博士后奖学金:SPRF:语义记忆搜索综合建模框架
- 批准号:
2313985 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
- 批准号:
10823000 - 财政年份:2024
- 资助金额:
-- - 项目类别:
A Longitudinal Study of the Relationship between Participation in a Comprehensive Exercise Program and Academic Achievement
参加综合锻炼计划与学业成绩之间关系的纵向研究
- 批准号:
24K14615 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
- 批准号:
2334510 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




