OWA Regret – Decision Making beyond Ordered Weighted Averaging and Min-Max Regret
OWA 遗憾 â 超越有序加权平均和最小-最大遗憾的决策
基本信息
- 批准号:448792059
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Decision making is ubiquitous, but only seldom is all information available that is required to guarantee an optimal solution. In decision making under uncertainty, we consider the case of multiple outcomes, where no probability distribution is known. Such problems naturally arise when using historical data.The decision making process is made more difficult if not all alternatives are given in an explicit list, but instead described by an implicit set of constraints. In route planning, for example, there are potentially exponentially many paths that would need consideration. To evaluate all of them takes too long. In this project we consider so-called combinatorial problems of this type, where all decision variables are binary.Many criteria which alternative to choose have been proposed and analyzed in the research literature. Unfortunately it turns out that there cannot be a single best decision criterion from an axiomatic point of view. Two criteria frequently used are the min-max regret and the ordered weighted averaging (OWA) approaches. In the first setting, we determine an optimal objective value under every scenario. When then choose an alternative where the largest difference of the corresponding objective value to the optimal value is as small as possible over all scenarios. In the second approach, we use a weight vector that controls the degree of conservatism. For each alternative, we calculate the vector of objective values over all scenarios, sort this vector, and calculate the scalar product with the weight vector. This includes the extreme approaches of only optimizing with respect to the worst case (robust optimization), the average case, or even the best case.In this project we consider a novel combination of these two approaches, where the OWA operator is applied to the vector of objective value differences. This means that instead of minimizing only the maximum regret, a variety of less conservative OWA regret approaches become possible. This setting has not been analyzed for combinatorial problems. We model this approach, understand its complexity and approximability, develop heuristic and exact solution algorithms, and evaluate it using real-world data. Additionally, we extend this approach from discrete uncertainty sets to interval-based uncertainty.As both min-max regret and OWA combinatorial optimization are active fields of research, the results developed in this project will have a major impact in the optimization under uncertainty community, and open new doors to finding good decisions in practice.
决策无处不在,但很少有保证最佳解决方案所需的所有信息可用。在不确定情况下的决策中,我们考虑多个结果的情况,其中概率分布是未知的。当使用历史数据时,自然会出现这样的问题。如果不是所有的备选方案都以明确的列表给出,而是用一组隐含的约束来描述,那么决策过程就会变得更加困难。例如,在路线规划中,可能有许多潜在的指数级路径需要考虑。对所有这些问题进行评估需要太长时间。在这个项目中,我们考虑了这类所谓的组合问题,其中所有的决策变量都是二进制的,在研究文献中已经提出并分析了许多选择方案的准则。不幸的是,事实证明,从公理的角度来看,不可能存在单一的最佳决策标准。两个常用的标准是最小-最大遗憾和有序加权平均(OWA)方法。在第一个设置中,我们确定每个场景下的最优目标值。然后选择一个备选方案,其中对应的目标值与最佳值的最大差异在所有情况下都尽可能小。在第二种方法中,我们使用一个控制保守性程度的权重向量。对于每个备选方案,我们计算所有方案的目标值向量,对该向量进行排序,并计算带有权重向量的标量积。这包括仅针对最坏情况(稳健优化)、平均情况甚至最好情况进行优化的极端方法。在本项目中,我们考虑了这两种方法的一种新的组合,其中OWA算子被应用于目标值差异的向量。这意味着,不只是最大限度地减少遗憾,而是各种不那么保守的OWA后悔方法成为可能。此设置尚未针对组合问题进行分析。我们对这种方法进行建模,了解其复杂性和逼近性,开发启发式和精确求解算法,并使用真实世界的数据对其进行评估。由于最小-最大遗憾和OWA组合优化都是当前研究的热点,本课题的研究成果将对不确定性社区下的优化问题产生重大影响,并为在实践中寻找更好的决策打开了新的大门。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Marc Goerigk其他文献
Professor Dr. Marc Goerigk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Marc Goerigk', 18)}}的其他基金
NIMROp: New Interdiction Models for Robust Optimization
NIMROp:用于稳健优化的新拦截模型
- 批准号:
459533632 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
HIRO – Hard Instances and Improved Algorithms for Robust Combinatorial Optimization
HIRO â 鲁棒组合优化的硬实例和改进算法
- 批准号:
431609588 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Doctoral Dissertation Research in Economics: Regret in Games: When It Is Not (Only) Your Fault
经济学博士论文研究:游戏中的遗憾:当它不是(唯一)你的错时
- 批准号:
2146695 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Emotion, investment, and market equilibrium: from the approach of regret theory
情感、投资和市场均衡:来自后悔理论的方法
- 批准号:
21K01589 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving AI Performance in Complex Real-Time Scenarios with Hierarchical Reinforcement Learning and Counterfactual Regret Minimization
通过分层强化学习和反事实遗憾最小化提高复杂实时场景中的人工智能性能
- 批准号:
2590735 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Online-to-Batch Conversion of Adaptive Regret Bounds for Neural Network Generalization Error
神经网络泛化误差自适应遗憾界限的在线批量转换
- 批准号:
546438-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
III: Small: Regret-Bounded Query Evaluation via Reinforcement Learning
III:小:通过强化学习进行遗憾限制查询评估
- 批准号:
1910830 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
A Study on Multiattribute Regret Theory and Experimental Practise
多属性后悔理论与实验实践研究
- 批准号:
17K03637 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Emotion and Financial Markets: Regret, Asset Price, and Market Efficiency
情绪与金融市场:遗憾、资产价格和市场效率
- 批准号:
16K03758 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Trust, regret, forgiveness and comfort for information management in autonomous networked devices.
自主网络设备中信息管理的信任、遗憾、宽恕和舒适。
- 批准号:
DDG-2015-00031 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Development Grant
Trust, regret, forgiveness and comfort for information management in autonomous networked devices.
自主网络设备中信息管理的信任、遗憾、宽恕和舒适。
- 批准号:
DDG-2015-00031 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Development Grant
The Relationship of Decision Regret and Patient Factors in the Medical Decision-Maikig Process
医疗决策过程中决策后悔与患者因素的关系-Maikig
- 批准号:
15K15177 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research